Lego

Mindstorms
Programming
with Visual
Basic
s

¥ a |

David Hanley
Sean Hearne

Table of Contents

Acknowledgements ii
Introduction i

Chapter One

First Steps in Visual Basic 1
Chapter Two

Introducing the Lego Mindstorms Kit 17
Chapter Three

Your First Robot 28

Chapter Four
Using Sensors 41

Chapter Five

Manipulating Variables 56
Chapter Six
Building Autonomous Robots 67

Chapter Seven

A More Controllable Robot 77
Chapter Eight

Delving Deeper into the RCX 84
Chapter Nine

Networking and Synchronisation 102
Appendices

Appendix A - Serial Communications 111

Appendix B - Downloading programs to the RCX with error checking 123

Appendix C - Setting up Visual Basic to program the Lego RCX 126

Appendix D - The RCXdata.bas file 129

Appendix E - Polling Motors 132

Appendix F - Programming the Lego RCX with other languages 137

Appendix G - The Lego RCX Memory Map 142

Appendix H - Downloading Firmware 145

Acknowledgements

The authors wish to thank the following people who assisted them in developing this book.

Joe Daly
Mary Barry
Paul Barry
Karl Sandison

Introduction

You may or may not have ever programmed a computer before. If you have, you'll feel a
ease with some of the early concepts presented here. If not, there is no need to desp
because this course has specifically been designed for you. This course involves yc
programming and controlling robots which you will construct using the Lego Mindstorms

robotic invention kit, using Microsoft Visual Basic version 5 as the development

environment in which you will work. Visual Basic helps you quickly and easily create

programs, and programming robots with Visual Basic is not as difficult as you may at first
expect it to be. Nor should you overly worry about the actual construction of the robots
The concepts will be introduced gradually and some of the building steps have even bee
included for you.

Included with this book are several appendices which describe the fundamentals of Leg
engineering as well as some computer architecture aspects of the serial communicatic
carried out by the Lego robots. The methods of programming of the Lego kit with other
languages besides Visual Basic are also described, as are several available packages
documentation related to the Lego kit.

For the most part the appendices are simply for reference, although they may be of intere
to some in building and programming the robots.

The course is broken up into a series of practical classes, each two hours long, whic
explain Visual Basic concepts and then require you to put these concepts into practic
using the Lego Mindstorms robotics Kkit.

Let's now start with the creation of your first Visual Basic program.

First steps

To begin work on your projects, you must first start the Visual Basic 5 application.

> Click on the WindowsStartbutton and move the mouse pointePtograms
> Locate Microsoft Visual Basic 5.0.
> Click on Visual Basic 5.0 in the submenu.

=] Internet Explarer
_=|LEGO MINDSTORMS
_=|Microsoft Hardware
=] Microzaft Office
icrasoft Visual Basic 5.0

% Windows Update

5| B > = Netscape Communicator Professional Edition * @Application Setup Wizard
avorites

=] Mew Visio Drawing
3 Esmmaits y =] MJStar Communicator

=] MJStar Japanese WP
JZ#F& Seftings » = Paint Shop Pra 5

= Programming
‘% Eind ¥ = Quarkimmedia

You should be presented with tNew Projectdialog box like the one shown in Figure 1.2. If this dialog box

* v v v

3 L) AP T ent Viewsr
» &% Books Online Flgure 1.1
L4 ;"q Crystal Reports

4 @ Readme

A wy, Visual Basic 5.0

Locate and click on
the Visual Basic icon.

does not appear when starting, click onFile menu of Visual Basic and choosew Project

Mew Project HE
|Crosoft a3
New]Existing] Hecent]
R > BN
4% Activex EXE Ackivels DLL Ackives WE Application
Conkrol “Wizard
& & & & &
Df Df B B¢ Iy Figure 1.2
WE Enterprise Addin Activel Activel Lego
Edition Co... Document DLL Document EXE
The New Projectdialog box.
Cancel From this list of choices you should now select
_ e | Standard EXEand click on Opento open your new
[Don't show this dialog in the future prOJeCt
-,
\V)
~
(@) The number of available options presented inNbBe/ Project
Z dialog box may vary depending on the particular edition or
version of Visual Basic that is installed on the computer ' 'ou
are using.
> SelectStandard EXHo create a new standard project.

Having started a new project, you will be presented with a desktop environment similar to the one whic

appears in Figure 1.3.

Although you haven’'t done much yet, you should save your project as it stands, if even just to give it a nan

When you save a project, two files are saved:

The project file has the .VBP file extension, and it conte ns
information that Visual Basic uses for building the project.
The form file has the .FRM file extension, and it contans
information about the form.

sy, Project] - Microsoft Visual Basic [design] - [Form1 [Form]]
[File Edit Wiew Project Format Debug Run Tools Add-Ins Window Help =
HM-a-B &R 3 HESE® o oo 7 4800 x 3600
E| Ll = x|
Geners | | N - O] e=]iS]
x B b T = B Project] (Project1)
=¥ Forms
A fadl b T 31 Formi (Form1)
=i :
- (m P x|
; [Form1 Farm =]
Alphabetic]Categmizad
(hame) Forml -
Appearance 1-3D
AutoRedrav False
=} = ' BackCalar [eHaoooonoFs.
BorderStyle 2 - Sizahle
ClipControls True
ControlBox True
DrawMode 13 - Copy Pen J
Drawstyle 0 - Salid hd H
— Figure 1.3
Returnsfsets the text displayed in an
x|
The Visual Basic
desktop environment.

You should always create a new folder on disk before saving your first file. Perform the following steps t

save the files.

> SelectSave Form Afrom theFile menu. This option allows you to save the current form.

> Using theSave Aglialog box which appears, select a location where to save your form. All the files
you will be saving during this course should be saved in the C:\\VBLEGO\ directory that you shoulc
already have created on the C:\ drive, so locate this directory now.

Save File As EH

Save jn: | 4 Whblego j g E H:é

Figure 1.4
File: name: |F0rm1 frm - .
The Save As dialog box.
Save as type: |F0rm Files [%.frm) j Cancel
Help Click here to create a new folder.

> Click on theCreate New Foldebutton (Figure 1.4).
> Type the name of the new folder@s01 and press the Return key.
> Now open the new folder by double-clicking on it.

3

Y

In the File Namebox, typeHello (Visual Basic will append the correct .FRM extension to the file
name after you have saved it).

Click on theSavebutton to save the form file.

SelectSave Projectrom theFile menu. This option allows you to save the entire current project.
In the File Namebox, typeHello.

Click on theSavebutton to save the project file.

YV V V V

Now that you've given your project and form a name, you can save your updates by simply seaing
Projectfrom theFile menu, and it will save the file with the same name you previously used. You can alsc
use the save icon on the toolbar.

Project Explorer Window

At this moment in time, your project is called Hello.VPB and it consists of a single form file: the Hello.FRM
file. However for most applications, your project will consist of more that one file.

The Project Explorerwindow holds the names for the files included in your project.

If the Project Explorerwindow is not already in view, seleetoject Explorerfrom theViewmenu of Visual
Basic.

Code Viewbutton Object ViewButton

M.S

BEE O

= E; Project1 (Hello.vbp)
m :
The two icons indicated above are useful for switching between the Object and Code views of the object.

Form] (Hella,frm)

The Project dialog box.

Toolbox Window
On the left of the screen you should see the Toolbox, which includes standard Windows controls, most
which appear in the majority of Windows programs, and are taken for granted all of the time. Figure 1.
shows the toolbox.

||
General
Pointer—= & ~<— PictureBox
Label— ~<—TextBox
Frame— ~— CommandButton
CheckBox— ~<— OptionButton
ComboBox—> ~<— ListBox
HScrollBar—= -<— \/ScrollBar
Timer —> ~<— DriveListBox
DirListBox —> | |<— FileListBox .
Shape—> <~ Line Figure 1.6
Image—> ~<— Data
OLE —= The Visual Basic Tool Box.

4

Depending on the particular edition of Visual Basic 5 that you have and on other various settings, yo
toolbox may include more (or fewer) icons in it.

Placing controls on the form
Let's start by placing a command button on our form (remember, the form is the large dotted area in tl
middle of the screen).

\‘

in the toolbox represents by positioning the mouse cu sor
(without clicking any of the mouse buttons) over the icon you

wish to examine. Visual Basic responds by displaying he
name of the current icon (or more correctly, the name of the
object to which it represents) in a small yellow rectangle. 1his
feature is called Tool Tip Text, and you will create your o vn

Tool Tips later.

\Y)
+~
o You can easily discover to which Windows element each i:on

To place a command button on the form:
> Double-click on the icon for theommand Buttom theToolboxwindow. Your form should now look
like the one in Figure 1.7.

w. Forml M=l

Figure 1.7

= Command!

Your form should now have a

command button placed in it.

> While the new button is still selected (the blue dots are present around it), place the mouse cursor o
the command button and press and hold the left mouse button. While keeping the mouse button h
down, move the mouse towards the bottom of the form. The button is now moved along with th
mouse. To place the button, release the left mouse button.

The Properties Window

The Propertieswindow is used to set the properties for the objects in your project. Prtipertieswindow

is not already in view, seleBrroperties Windowwrom theViewmenu of Visual Basic.

The properties of an object define how the object looks and behaves. For example, a form is an object. ~
Captionproperty of a form defines what text is to appear in the title of the form (i.e. its caption). The propert
name is on the left side of the list and the current value of that property is displayed to its right.

To change the caption of the form in our project to The Hello World Program, you must cha@Ggettbe
property of the form.

Click anywhere on the form, except on your command button. The title Bfdpertieswindow should now
read Properties - Forml if it is displayed and there should be some blue dots surrounding the form.
In the Propertieswindow, click on the cell that contains the wd&dption

|Form Farm d
Alphabetic]Categorized]

(Mame) Faorml -
Appearance 1-30
AukoRedraw False
Eackicolor [&Hs000000F::
BorderStyle 2 - Sizable

Farmi i
ClipContrals True Flg ure 1) 8
ControlBoz True
Drawtode 13 - Copy Pen ﬂ

Caption
Returnssets the text displayed in an
object's title bar or below an object's

ican. the properties applicable to the currently selected item.

The Propertieswindow, where you can inspect and change

Without selecting anything else, type in the t€ké Hello World Program.
The form now looks like the one presented in Figure 1.9.

w. The Hello World Program (_ O]

Figure 1.9

Your program now has a more meaningful title.

The Name Property

Each object in Visual Basic must have a name, which is definedgnmtgproperty. If you look at thBlame
property of the form in the Hello program, you will notice that it is céfleanl This is the name that Visual
Basic automatically assigns it when it is created, but this name is not very descriptive to us and could be mi
more helpful.

To change th&lameproperty of the form:

> Ensure that the form is selected.

> Click on theAlphabetictab of thePropertieswindow.

> The first property referred to is tt{Blame)property. It is enclosed in brackets in order that it will
appear at the top of the alphabetic list. Click on this first cell and type thienéello .

In the preceding step, you changed Mameproperty to frmHello. The first three characters are used to
describe the type of control that the object is. This is not necessary, but it is done because it makes the ¢
clearer and easier to understand.

Figure 1.10.

Properties - Forml

|Form1 Farm j

PocCtl it = Another way of switching between the properties of different objects (instead
txtBin TextBox

titBrake TextBox J of selecting the object on the form) is to use the list box situated near the top
EEEEE?FEE?}KDX = of the Propertieswindow. The Propertieswindow lists the properties of the
S] object whose name currently appears in the list box at the top of the

Propertieswindow. To view the properties of another object, click on the
down arrow icon of the list box and select the desired object.

The command button that you created is intended to be used to exit the program, and we now wish to cha
the button’sNameproperty to something to reflect this:

> Select thdNameproperty and change this ¢ondEXxit.

The Exit button contains the text ‘Command1l’, which is the default caption. In order to change the captiol

> Select theCaptionitem in the list of properties if it is not already selected, and replace the default text
with the textE&xit .

causes the x to be underlined in the caption of the buiton.
When the program is executed, pressing the Alt button anc¢ the
X button together (Alt + x), has the same effect as clickinc on

the button with the left mouse button.

~.

\Y)
~) .
o The & character, called ‘ampersand’, before the x in E&«it

As you may have noticed, the names for the objects begin with three letter prefixes which describe their ty|
for example the main form is called frmHello, and the command button is called cmdExit.

These and the prefixes for other types of objects are summarised in Table 1.1.

Prefix Object Type Example

chk Check box chkReadOnly
cbo Combo box cboEnglish
cmd Command button cmdExit

dig Common dialog digFileOpen
frm Form frmEntry

fra Frame fraLanguage
gra Graph graRevenue
grd Grid grdPrices

hsb Horizontal scroll bar hsbVolume
img Image imglcon

Ibl Label IbIHelpMessage

lin Line linVertical

Ist List box IstPolicyCodes
mnu Menu mnuFileOpen
pic Picture picVGA

shp Shape shpCircle

txt Text box txtLastName
tmr Timer tmrAlarm

upd UpDown updDirection
vsb Vertical scroll bar vsbRate

sld Slider sldScale

tib Toolbar tibActions

sta StatusBar staDateTime Table 1.1.

Changing the Font property of the Exit Button
To change the font of the text in tB&it button:

> Select themdExitbutton, and in th@ropertieswindow, select th&ont property.

Take care that when you are instructed to select a ce tain
button, as you are instructed here to selectth@Exitbutton,

that we are referring to tHdameproperty, as opposed to th =2
Caption property of the object. The text will make it cle
where ambiguities may arise.

K).
J~
O

<

[emdExit Commandeuttan
Alphabetic Categorized]

=]
=l
DisabledPicture {Mone) d

({Mone)

({Mone)

0 - Manual

True

M3 Sans Serif J
495

Figure 1.11

T The default font for all newly created items is MS Sans Serif.

Returns a Font object,

You can change the font in the Properties Window.
8

At the moment the font is MS Sans Serif but you want to change this to the System font.
> Click on the icon with the three dots (termed ellipsis) to the right of the Aantd
> Change the font to System and the font size to 10, and then click on the OK button.

Font

Im

FEont: Font style:

|S yztem |Bold -

o Bold ltalc _ Cancel |
T 5

Terminal
T Teminator '

Small Fonts
Swlogo
bl

Tahoma

Effects Sample

[™ Stikeout

[Underline AaBbYyZz
Script:

Western hd

HE

Figure 1.12

The Font dialog box.

The text in the cmdExit button has now changed font.

Figure 1.13

The font setting of the command button has now changed.

You now want to add more buttons to the form:

> Like before, double-click on the CommandButton icon in the Toolbox.

> Drag the newly created button onto the left side of the form.

> You will now create another button on the form, but this time you will use an alternative method
Click on the CommandButton icon in the toolbox once and then move the mouse cursor on to tt

form.

> Position the mouse cursor (which is in the shape of a crosshair) at a position on the form where vy
would like one of the button’s four corners to be positioned.

> Click on the left mouse button and whilst holding the mouse button pressed, drag the mouse curs

to the diagonally opposite corner and release the mouse button.

Figure 1.14

Your form should now have a
Command Button placed in it

Resizing the command buttons:

> Click on theCommandbutton. If performed correctly, blue handles should now appear around the
button.

> Place the mouse cursor over the bottom middle handle, and the cursor should change its shape
double sided arrow.

> Now drag this handle downward to make the button bigger.

> Repeat the procedure for tB®@mmandadutton.

w. The Hello World Program (_ O]

........... . Figure 1.15

EEEEERERE R 3t Add another new button to your

.............. = - form and resize both of them.

Changing the properties of the new buttons

You would now like to change the properties of the two new buttons.

> Select theCommandbutton.

Change thédameproperty tocmdHello.

Change the&aptionproperty to&Hello World .

Change the font to System and font size 10.

Do the same for th€Eommandautton, naming itmdClear, and changing it€aptionproperty to
&Clear.

Y V V V

Figure 1.16

The form as it should appear following

renaming of the new buttons.

10

You may wish for the entire caption of tbedHellobutton to fit on the same line.
> Select the button cmdHello.
> Drag the right-hand middle handle towards the right to enlarge it.

If you want both of your new buttons (or indeed all three buttons) to appear the same size:

> Select all of the buttons you wish to make the same size. Do this by firstly clicking on each butto
whilst holding down the Shift key.
> On theFormatmenu, selecilake Same SiZé Both The buttons will now be the same size.

If you wish to align the buttons horizontally, you can select the desired buttons and theRmehatt]
Align [0 Bottoms
You should experiment with the different options in Begmatmenu until you are comfortable with them.

You are now going to add another object to add to the form, a text box. A text box object is a rectangular au
in which text is displayed.

The TextBox Control

A text box is a box which can be placed on your form, and can be used to enter code into the program, o
display results retrieved from an operation within a program.T€R&Boxtem is the icon in the toolbox with

the lettersAB on it. If you position the mouse cursor over this icon the TextBoxappears in a yellow
rectangle.

> Click once on th&extBoxicon in the Toolbox and then move the mouse cursor over the form.

> Position the cursor in the position where one ofTfia&Boxobject’s corners are to be, and drag the
cursor to the opposite diagonal corner.

> When you release the mouse button, ieetBoxand its default contents will appear.

Figure 1.17

A default text box should
be placed on your form.

You now want to change some of the properties of the text box:

> Make sure that the text box that you have just created is selected.
> Change itdNameproperty totxtHello.
> Delete the contents of tAextproperty (currently Textl), because you don’t want anything to appear

in the text box when the program is first executed.
> The defaultAlignmentproperty of the text box i8-Left Justify which means that the text is aligned
to the left side of the text box. Because you want the text in the text box to be centered, change tl
option to2-Center using the combo box which appears when you click on the arrow pointing down.
11

> You must also set thklultiline property to True, or Visual Basic ignores tAkgnmentproperty
setting.
> Change thé-ont property oftxtHelloto System and change the font size to 10.

Executing your program

If you want to see you program running as it stands:

> Save your work by selectir§ave Projectrom theFile menu (or by clicking on th8ave Projecicon
on the toolbar).

> SelectStartfrom theRunmenu. (You could also press the function key F5 on the keyboard or press
the Start button on the toolbar)

> As you can see, nothing happens when you press any of the buttons that you created. This is bece
you have not assigned any code to these buttons.

> To exit from the application press tkebutton in the top right corner of the window.

-,

\Y)
~ N
(®) You may see the word ‘Run’ in this and other documents wen

referring to programs. Both ‘Run’ and ‘Execute’ may be u¢ ed
interchangeably when referring to programs.

Attaching Code to the Objects

Visual Basic is an event-driven language - when an event is detected, the project goes to the correct e\

procedure. Event procedures are used to tell the computer what to do in response to an event.

In our program, an example of such an event would be the pressing of the cmdExit button. At the mome

when we press this button an event occurs, but we have no event procedure associated with this event

attach code to this event:

> Double-click on themdExitbutton. The code window now opens with a shell for your sub procedure,
i.e. the first and last lines of your sub procedure are already in place.

P Project] - Form1 [Code] - (O] x|
[erndExit | [cliek |
Frivate Zub cmdExit_ Clicki() I
End Sub
Figure 1.18
| The code window with the first and
==« iy last lines already in place.

As shown in Figure 1.18, the top-left combo box @igectlist) displays the name of the objécmdEXxi)
and the top-right combo box (tfRFocedurelist) displays the name of the event ‘Click’.

12

> Press the tab key on the keyboard once to indent and then type the following statement:

End

The text in theCodewindow should now look as follows:

Private Sub cmdExit_Click()

End

End Sub

> Save your work so far and then run the program, for example by pressing the blue video recorder st
Play button on the toolbar.

> Clicking on the Exit button causes the program to exit (i.e. it stops executing).

Attaching code to the cmdHello button
To attach code to themdHellobutton:

> Bring up the object view. You can do this by selectigectfrom theViewmenu, or by pressing the
middle icon at the top of theropertieswindow.
> Double-click on the cmdHello button. The code window should again appear with the shell of the su

procedure focmdHello_Click().
> Type the following:

txtHello.Text = “Hello World”

You will notice as you type that when you reach the full stop at the end of txtHello, a list of options is
presented to you. These are the only possible options you can choose for the current item, in this case a ti
box. You can either sele€extfrom the list by using the up and down keys and then pressing the space bar,
or by scrolling with the mouse and then clicking the left mouse button on the desired item, or you car
continue typing the word yourself.

This statement assigns the value Hello World to the Text property of txtHello.

Attaching code to the cmdClear button

To attach code to themdClearbutton:

> Bring up the object view again.

> Double-click on the cmdClear button. The code window should again appear with the shell of the
sub procedure facmdClear_Click().

> Type the following code in the procedure:

txtHello. Text = “”

This statement assigns the vatudl to theTextproperty of txtHello. In other words, it clears the text box.
Your code window should now look like Figure 1.19.

13

P Project] - Form1 [Code] - (O] x|

[emaciear | [cliek |
Frivate Zub cmdClear Clicki() I
txtHello.Text = ™" Tl

End Zub

Frivate Zub cmdExit_Clicki()

Endt Figure 1.19

End Sub

Frivate Zub cmdHello Clicki()
txtHello.Text = "Hello World™

End Sub Your code should look
KIN o7 like this at this stage.

o

Running the program

The Hello program is now finished. To see the finished product:
> Save your work.

> Then run your program.

wi. The Hello World Program _ O] x|
‘ Hello World
— Figure 1.20
éﬂello World Clear ‘
When you run the program again, test your
Exit
buttons to see that they work correctly.

Y

Click on theHello Worldbutton and the words Hello World should appear in the text box.

Click on theClear button and the text box contents should be cleared.

> Also notice that the same effect can be obtained by pressing Alt + H and Alt + C respectively, as w
programmed them to do so earlier.

> To end the program, click on the Exit button (or press Alt + X).

Y

14

The method by which you have been presented the code for your programs has been somewhat hapha
and has had little or no organisation. From now on you will be presented with a table detailing each ite
which you are required to place on your form, its name and the values which you must set to its propertit
Not all of the properties which an object holds will require changing. You can therefore use the table as
reference guide as you build your program, and it will allow checking for errors in your program if it does
not work in the one place. You provide you with a sample, this chapter’s code will now be presented in
table.

Control Type Property Value
Form Name frmHello
Caption The Hello World Program
Command Button Name cmdExit
Caption E&xit
Font System, Bold, 10
Command Button Name cmdHello
Caption &Hello World
Font System, Bold, 10
Command Button Name cmdClear
Caption &Clear
Font System, Bold, 10
Text Box Name txtHello
Text (Leave Blank)*
Alignment 2 - Center
Multiline True
Caption (Leave Blank)
Font System, Bold, 10
~.
)
~ . . S .
O Anytextina table enclosed in brackets is an instruction to ! ou.
Z For example, in the above tab{egave Blank)*n regard to a

Text property instructs you to clear the text in the relevant
item.

15

Creating an executable file
As it stands your program will only run within the Visual Basic environment. If you would like your program
to run as a standard stand-alone program outside of Visual Basic:

>
>

>

A\

SelectMake HELLO.exe. from theFile menu.

In the dialog box which appears, the name of the executable is given as Hello.exe, if you want
change the name you can do so here.

The directory where the executable is to be created is given at the top of the dialog box. This shot
be the same directory as created earlier (Ch01).

The program executable is now created inGh&1ldirectory.

Open up the C:\VBLEGO\CHOL1 directory Windows Explore(its icon should be at the bottom or
near the bottom of the list of programs in Bregramsmenu when you click th8tartbutton). If you
examine the files therein, you will notice that the file size for Hello.exe is very small (around 10Kb,
whereas the Visual Basic application has a file size of 1,8]1.-9. Hhbis is because for any executable
created with Visual Basic, to be able to run that executable file, another file called Msvbvm50.DLL
must be contained within the System directory of your computer (C:\Windows\System for Win95/98)
This is automatically installed when Visual Basic 5 was installed on your computer.

That's it! In the next lesson you’'ll get to meet the Lego Mindstorms kit, and you'll create a program tc
interact with it.

1.

1 Kb (kilobyte) = 1,024 bytes. For a complete guide to the measurements and number systems u:
in computer science, see Appendix A.

16

L
q—-

Introducing the Lego
Mindstorms Kit

You will now be introduced to the Lego Mindstorms kit and how it is controlled by your programs. The kit
comprises of several key elements which work together. The brain of the robots you will create is called t
RCX, as shown.

-l —
, Figure 2.1

The Lego Mindstorms RCX.

The RCX is amicrocontroller This means that its basic operation is to take in one or more inputs, proces:
these inputs with a given program, and then to control the outputs according to the result of the program. T
concept will become more clear as you use the kit. The RCX has three inputs and three outputs. Poss
inputs to the system come from sensors, such as light sensors and touch sensors. Possible outputs are m
The sensors and motors are connected to the RCX via cables, which have LEGO brick style connection:
either end to connect everything together.

Touch sensors

~ " Light Sensor

Figure 2.2
Motors

The RCX with motors
and sensors.

For the first part of this practical you are going to create a program to check out the condition of the RC:
For example, you will find the level of power remaining in its batteries. Your final form should look
something like the one shown in Figure 2.3.

18

w, Diagnostics =]

Bk Alive 7

Tower Alive ?

R Battery 7
Figure 2.3
Hopefully your final form will

——Ei—J look something like this.
Variables

You may have noticed that in this program we intend to find out certain properties of the RCX, for exampl
whether or not it is switched on, and the level of battery power remaining in the RCX. We will do this by
‘polling’ the RCX. This is basically the technical term for asking the RCX for its properties. We want to store
the values which the RCX returns to us in order that we may then print them on the screen. In order to st
these values, we use what are called variables. Variables are so called because they are objects whose v
can change. You will have seen variables used in mathematics. An expression such as

X+y=6
has two variables, x and y.
Variables can also store non-mathematical information. In the first chapter you used the expressions

txtHello.Text = “” and
txtHello.Text = “Hello World”

What you were actually doing here was giving the propattyello.Textthe value “” and then changing it

to “Hello World”. The propertyfextis actually an example of a variable, and the txtHello suffix tells Visual
Basic that this variable belongs to the object txtHello. In fact, because all of the properties of an object ¢
capable of being changed, they are all variables. We can define our own variables to use in our own progra
For example, if we had a mathematical expression

X+y=z

and we gave the variable x the value 2, and the variable y the value 6, we could write a program which wol
calculate that their sum was 8, and give this value to the variable z. We call this giving a value to a varial
assigninga value to a variable.

What about numbers suchmaand e ?
Because these numbers never change, they are not variables, they areonatiuts Constants are also
widely used in mathematics and in programming. Programming the Lego RCX can be simplified by usin

19

many pre-defined constants such as MOTOR_A and TIMER_2.

There are therefore many types of variables, but you will almost only ever need to use text strings a
numbers. However, as you may know from mathematics, there are differing types of number, such as inte
(whole numbers such as 1, 6, -23), floating point numbers (1.235, -4.6, 6.0), real numinet®2j6etc.

We will therefore follow the convention of prefixing each of our variable names with a letter indicating the
type of variable we are using. The following table gives these conventional names and examples of their u

Data type Prefix Example
Boolean bln binFound
Byte byt bytRasterData
Collection object col colWidgets
Currency cur curRevenue
Date (Time) dtm dtmStart
Double dbl dblTolerance
Error err errOrderNum
Integer int intQuantity
Long Ing IngDistance
Object obj objCurrent
Single sng sngAverage
String str strFName
User-defined type udt udtEmployee
Variant vnt vntCheckSum Table 2.1

The Label Control
A Labelcontrol is a graphical control you can use to display text that a user can't change directly, but yc
can write code at design time that will change the contents afathed control.

To create a new program, you need to create a new project.
> Start Visual Basic. If th&lew Projectwindow appears, click on th@ancelbutton to close it.

> SelectNew Projectfrom theFile menu.

> Select the Lego icon in tidew Projectwindow, then click the OK button.

> Make sure that thEorm1window of the new project is the selected window and then frorkitae
menu, selecBave Forml As

> Using theSave Aglialog box which appears, locate the C:\VBLEGO\ directory.

> Click on theCreate New Foldebutton, and name the fold€h02.

> Open the newly created folder.

> Call the formDiagnosticsand then click on th8avebutton.

> SelectSave Project Akom theFile menu.

20

Y

The first file to be saved is the .bas file. Enter the file nam@iagnosticsand click on theSave

button (the location should already be the Ch02 folder).

You are then asked to save the .vbp file. Call Ehagnosticsalso and click on th&avebutton.

Built the frmDiagnostics form according to Table 2.2.

Control Type Property Value
Form Name frmDiagnostics
Caption Lego Mindstorms Diagnostics
Command Button Name cmdRCXAlive
Caption &RCX Alive ?
ToolTipText Check the status of the RCX
Command Button Name cmdTowerAlive
Caption &Tower Alive ?
ToolTipText Check the status of the Tower
Command Button Name cmdBattery
Caption RCX &Battery ?
ToolTipText Battery Voltage
Command Button Name cmdExit
Caption &EXxit
Label Name IbIRCXAlive
Alignment 2 - Center
BorderStyle 1 - Fixed Single
Caption (Leave Blank)
Label Name IbITowerAlive
Alignment 2 - Center
BorderStyle 1 - Fixed Single
Caption (Leave Blank)
Label Name IbIBattery
Alignment 2 - Center
BorderStyle 1 - Fixed Single
Caption (Leave Blank)
Table 2.2

21

> Enter the following code for themdExit_Click() procedure having already inserted Bption
Explicit statement. (Remember that to enterahedExit_Click() procedure code, you can double
click on thecmdExitbutton in the object view).

"All variables must have a declaration
Option Explicit

Private Sub cmdExit_Click()
PBrickCtrl.CloseComm ' Close the Serial Port

End
End Sub
> Now enter the code for tHerm_Load() procedure.

Private Sub Form_Load()
PBrickCtrl.InitComm ' Init PC Serial COM Port
End Sub

Let’s now examine this code in detail.

The first line of code is called a comment. A comment is any line of text which begins with an apostroph
character (*). You can write anything you want after the ' character. It is used to make your code ma
understandable to both yourself and especially anyone else who reads your program.

The Option Explicit declaration states that every variable which you use must be declared before you ai
allowed to use it. This is useful because it means that if you make a mistake in typing the name of t
variable, Visual Basic will not assume that it is a new variable, but that you did indeed make a typing errc
In order to communicate with the RCX, the computer must first initialise the PC’s serial communication
port. This is done using tHeBrickCtrl.InitComm command.

You would like this command to be executed immediately after the program starts. To do this you place t
command in thérivate Sub Form_Load() event procedure. This procedure is immediately carried out
when the form is loaded (opened). To get the shell of the code for this procedure, double click an any part
the form that does not contain a control.

Figure 2.4

The RCX in close proximity
to the infra-red tower.

Having completed communications with the RCX, the comnfaBdickCtrl.CloseComm is called to
close the serial port. You don't normally want to call this until you are completely finished communicating
with the RCX, so the best place to put this command is ierth@Exit_Click() procedure, which ends the
entire program.

> Save your project by choosit@ave Projectrom theFile menu.
> Execute your program by clicking on the Start (play) button on the toolbar.
> Click on the Exit button, and the program will terminate.

The program calls thinitComm procedure when the form is loaded and callsGleseComm procedure
when the Exit button is pressed.

In between calls to these two setup commands, you will write code to initiate interaction between the RC
and the infra-red tower.

Decisions within your program

Decision statements give your program the power to choose between options available in to your code ¢
to react appropriately to situations that occur during execution. In order to implement decisions, you can L
thelf ... Then ... Else structure.

The If ... Then ... Else structure

If introduces the condition on which the decision will be based.

Then identifies the action that will be performed if the condition is true.
Else specifies an alternate action, to be performed if the condition is false.

You now want to write some code to interact with the RCX and to discover some of its settings.
> Enter the rest of the code for the program, beginning with this procedure:

Private Sub cmdBattery_Click()
IbIBattery.Caption = Str(PBrickCtrl.PBBattery)
End Sub

> Now add this procedure:

Private Sub cmdRCXAlive_Click()
If PBrickCtrl.PBAliveOrNot Then
IbIRCXAlive.Caption = "True"
Else
IbIRCXAlive.Caption = "False"
End If
End Sub

23

> And now add this procedure:

Private Sub cmdTowerAlive_Click()
If PBrickCtrl.TowerAlive Then
IblTowerAlive.Caption = "True"
Else
IblTowerAlive.Caption = "False"
End If
End Sub

The event proceduremdRCXAlive_Click() introduces the use df...Then...Else statements in Visual
Basic. If the RCX is switched on and the infra-red tower can communicate with it, then 'True' is displayed i
the result label. If not, 'False' is displayed. Note that you must explicitly end the If statement kit Hn
statement, just as you have to end a subroutineBmithSub.

The cmdBattery_Click() procedure is also worth noting. In this line of code, the battery's voltage level is
first found, the numerical value found is then coverted to a string using the Str function, and the caption
the IbIBattery label is then set to this value.

The proceduremdTowerAlive() checks to see if the transceiver tower is OK. If the tower hardware and the
battery are functioning, then 'True' will be displayed in the result label. If not, 'False' will be displayed.

Y

Save your project.

Execute your program.

> With the RCX switched on and in close proximity to the infra-red transmitter, click on the three
buttons which perform the tests in sequence.

> Now switch the RCX off and click on the ‘RCX Alive ?’ button. (If the RCX is switched off, you are

advised not to click on the ‘RCX Battery ?’ button as an error will occur).

Y

The battery's voltage level is measured in millivolts, and with new batteries in the RCX, the value should |
close to 9000 mV. The value decreases steadily over time, so only have the RCX switched on when necess
You can test the range of the infra-red transmitter by repeatedly checking that it is alive (as deemed by y«
program).

One problem you may encounter is a level of interference between different RCX's if there are more than c
of them in the room. In order to combat this, you can include in your program an option to specify th
transmitter power of the RCX. With several RCX's in a room, the power should be set to Short Range.

24

Add the items in Table 2.3 to the form, and following that, add the relevant code below.

Control Type Property Value

Command Button Name cmdShortIR
Caption IR &Short
ToolTipText Short Range Communications

Command Button Name cmdLongIR
Caption IR &Long
ToolTipText Long Range Communications

Label Name IbIRange
BorderStyle 1 - Fixed
Caption (Leave Blank)
Table 2.3

Private Sub cmdShortIR_Click()
PBrickCtrl.PBTxPower SHORT_RANGE
IbIRange = "RCX set up for Short Range"

End Sub

Private Sub cmdLongIR_Click()
PBrickCtrl.PBTxPower LONG_RANGE
IbIRange = "RCX set up for Long Range"

End Sub

~.

\V

~ . o

o Although here we are setting the transmitting power of :he
RCX, the transmitting power of the IR tower has to »oe
manually set with the switch at the front of the tower.

Figure 2.5

The switch which sets the transmitting power of the tower.
Long range communications.

Short range communications.
25

Save your project.

Execute the program.

Click on the IR Short button.

Place the RCX at a range of distances from the tower (but without obscuring it), and at each distan«
click on the ‘RCX Alive ?’ button. With experimentation, you can estimate the range for Short Range
communication.

YV V V V

> Click on the IR Long button.
> Repeat the above step to find the range for Long Range communication.
~.
\Y)
+~

o Whichever RCX transmitting power you wish to use for otlier
Z programs involving the RCX, you should click on is
corresponding button before exiting the program.

Increasing the functionality
You are now going to add some more functionality to your program. We would like to allow the user to se
the RCX’s time value with the program, and also to allow the user to switch the RCX off.

> Place the following controls on your form:

Control Type Property Value

Command Button Name cmdSetTime
Caption Set R&CX Time
ToolTipText Set RCX to present time

Command Button Name cmdRCXOff
Caption Turn RCX &Off
ToolTipText Switch Off the RCX

Table 2.4

> Now enter the following code:

Private Sub cmdRCXOff_Click()
PBrickCtrl.PBTurnOff
End Sub

Private Sub cmdSetTime_Click()
PBrickCtrl.SetWatch Hour(Now), Minute(Now)
End Sub

26

The code to switch the RCX off is quite straightforward. Here a method n@Bied nOff is called which
instructs the RCX to switch itself off.

The second procedure is not so straightforward. You would like to set the RCX’s time setting to that of yol
computer. To do this you must first find out the system time, and so this is where the filaostias used.
When theNow function is called, it "finds out" the system date and time, but you only want the hour and
minute values. To discover these values, the functittns" andMinute are used. So what are finally passed

to theSetWatch method are in fact the values of the current hour (between 0 and 23) and the current minu
(between 0 and 59).

Exercise

The first part of this practical allowed you to poll the RCX to find out information. Pressing the three button:
individually is time consuming and is inefficient from a programming point of view. Instead, write code for
a button that will update all three label fields. Warning: If the RCX is not alive the battery should not be teste
and its corresponding label should be blanked out.

27

Your First Robot

So far your robot has been somewhat non-mobile. You can add more mobility to your constructions by usi
the motors which come with the Lego set. In order to connect the motors to the RCX, special electrical lea
featuring Lego brick style connectors are provided.

One of the two motors An electrical lead to connect your
supplied with the RCX motors to the RCX

There are three motor outputs on the RCX. These are black
connectors which are labelled A, B and C. You can connect the
electrical lead to each output in four different orientations. You
can also connect the other end of the lead to the motor in four
different orientations. Whichever orientation you choose can
influence whether the motors rotate in a clockwise or anti-
clockwise direction.

In the last chapter you learned how to use the Spirit control to communicate with the RCX. You are no
going to create a program that will control a car that you will make using Lego.

Thus far you have only seen t@éck event been used for command buttons.

To create a new program, you need to create a new project.

> Start Visual Basic. If thélew Projectwindow appears, click on ti@ancelbutton to close it.
SelectNew Projectfrom theFile menu.

Select the Lego icon in tidew Projectwindow, and then click the OK button.

Make sure that thEorm1window of the new project is the selected window and then frorkitbe
menu, selecBave Forml As

Using theSave Aslialog box which appears, locate the C:\VBLEGO\ directory.

Click on theCreate New Foldebutton, and name the fold&h03.

Open the newly created folder.

Call the formRemote Controland then click on th8avebutton.

SelectSave Project Akom theFile menu.

The first file to be saved is the .bas file. Enter the file nanReasoteand click on theSavebutton
(the location should already be the Ch03 folder).

You are then asked to save the .vbp file. Call Rasotealso and click on th8avebutton.

> Built the frmRemote form according to Table 3.1.

YV V V V V V Y VYV V

Y

29

Figure 3.1

Start by creating this form for
this chapter’s program.

Control Type Property Value
Form Name frmRemote
Caption Remote Control
Command Button Name cmdFwd
Caption &Fwd
ToolTipText Move Forward
Command Button Name cmdRev
Caption Reé&v
ToolTipText Move Backwards
Command Button Name cmdLeft
Caption &Left
ToolTipText Turn Left
Command Button Name cmdRight
Caption &Right
ToolTipText Move Right
Command Button Name cmdExit
Caption E&xit

Table 3.1

30

31

Previously when you were required to enter code for a command button, you simply double-clicked on ti
button and the shell of the procedure was already created for you. But the shell created in this way only cov

aClick event and not th®ouseUp or MouseDown events that you now want to implement.
To code, for example, thendFwd_MouseDown event:

> Double click on themdFwd button on the form as usual.
> You are now presented with t@®dewindow view.
> In the two combo boxes at the top of the code window, you shoulchséBwd in the left one (the

Objectlist) andClick in the right one (th@rocedurelist).

Click on the down arrow in the right hand box and selecMbeseDowroption.

A new shell will be created for this event.

If you do not want themdFwd_Click() event, simply select it and delete it.

Now enter the following code in the procedure shell which has just been created.

YV V V V

Private Sub cmdFwd_MouseDown(Button As Integer, Shift As Integer, X As
Single, Y _ As Single)

PBrickCtrl.SetFwd MOTOR_A + MOTOR_C

PBrickCtrl.On MOTOR_A + MOTOR_C ‘Drive forward
End Sub

In the first line of the code above, the underscore ‘_’ character was used to end the line. You may have noti
however, that this is not the end of this line of code. The underscore character tells Visual Basic that the li
of code is not yet finished and that it continues on the next line. This is useful because sometimes you n

have long lines of code in your program, as in the procedure above.

32

> Now select the MouseUp option from tReocedurecombo box, and type the following code:

Option Explicit

Private Sub cmdFwd_MouseUp(Button As Integer, Shift As Integer, X As Single,
Y As _ Single)

PBrickCtrl.Off MOTOR_A + MOTOR_C
End Sub

> Using the same method as previously, enter in the following code:

Private Sub Form_Load()

PBrickCtrl.InitComm ‘Initialises the PC-Serial com port.
PBrickCtrl.SetPower MOTOR_A + MOTOR_C, CON, 2
End Sub

Private Sub cmdLeft_MouseDown(Button As Integer, Shift As Integer, X As
Single, Y _ As Single)

PBrickCtrl.SetFwd MOTOR_C

PBrickCtrl.On MOTOR_C
End Sub

Private Sub cmdLeft_MouseUp(Button As Integer, Shift As Integer, X As Single,
Y As _ Single)

PBrickCtrl.Off MOTOR_C
End Sub

Private Sub cmdExit_Click()
PBrickCtrl.CloseComm
End

End Sub

How the Remote Control program works

As in the last chapter the methibdtComm is called in thecorm_Load procedure to start. The statement:
PBrickCtrl.SetPower MOTOR_A + MOTOR_C, CON, 2

sets the power of the motors. Here the power is set to a cofi3@N) value, 2. The power setting can be
any value between 0 and 7. This setting does not so much effect the speed of the motors, but the powe
the motors. When a robot is running on a surface with high friction, such as carpet, this should be set t
high value.

When thecemdFwd button is pressed down, the robot is to move forward. The event procedure
Private Sub cmdFwd_MouseDown(Button As Integer, Shift As Integer, X As Single,
Y As _ Single)

PBrickCtrl.SetFwd MOTOR_A + MOTOR_C

PBrickCtrl.On MOTOR_A + MOTOR_C ‘Drive motors forward
End Sub

is triggered when the button is pressed. Here both motors are first set to the forward direction and th
33

switched on.
When the button is released, the event procedure:
Private Sub cmdFwd_MouseUp(Button As Integer, Shift As Integer, X As Single,
Y As _ Single)
PBrickCtrl.Off MOTOR_A + MOTOR_C
End Sub
is triggered. Here both motors are turned off.
The code for turning left is similar, but you only want the right motor rotating in a forward direction. The
method SetFwd sets the direction of the motors to Forward. Other possible methods effecting motol
direction are:

- SetRwd - Set the rotation of the motor(s) specified to Reverse.
-AlterDir - Set the rotation of the motor(s) specified to the opposite direction.
Exercise:

The code to make the robot reverse and to go right is not shown. You should be able to write these by copy
and modifying the code for tifeorward andLeft events.

Placing graphics on command buttons

As well as being able to place your own captions on your command buttons, you can also place graphi
images on your buttons. To do this, follow these steps.

> Select the command button you wish to modify.

> Delete the button’€aptionproperty if one exists.

> Change thé&tyleproperty tol - Graphical.

> Using thePicture property, locate the graphic file wish you wish to use.

Note that in this chapter, the authors have used images from the VB/GRAPHICS/ directory, however this m
or may not exist on your computer depending on the initial installation.

Expanding your control over your robot

You will now expand on this program. As can be seen frorhdhen_Load() event, the power of the motors

is set at a single value. You would like to be able to change this power value with the program itself. Yc
should aim to achieve this by using a horizontal scrollbar. Its icon’s tool tip tedg8aliBar.

Continuing with the previous program, place a horizontal scrollbar at the bottom of the Remote form. To ¢

this:

> Select theHorizontal Scrollbarcontrol from the control toolbox and place the mouse cursor on the
form. The cursor should be in the shape of a crosshair. Holding down on the left mouse button, dri
it across the screen, forming a rectangle in the process. Release the mouse button when you h
reached the desired size. You can resize the scrollbar by selecting it and dragging any of the blue d
to another extent.

34

w. Remote Control (_ O]

Figure 3.2

| Add to your form a horizontal

| scrollbar and a textbox.

Control Type Property Value

Horizontal ScrollbarName hsbSpeed
Max 7
Min 0

LargeChange 1
SmallChange 1

Value 2
Text Box Name txtSpeed
Value 20 mph

Alignment Center

Table 3.2

> Double-click on the scrollbar and add the following code:

Private Sub hsbSpeed_Change()
PBrickCtrl.SetPower MOTOR_A + MOTOR_C, CON, hsbSpeed.Value
txtSpeed.Text = Str(hsbSpeed.Value * 10) + “mph”

End Sub

How this code works

The Horizontal Scrollbar encompasses the values in the range 0 - 7 (Min - Max). The current setting
contained in the hsbSpeed.Value property. The statement

PBrickCtrl.SetPower MOTOR_A + MOTOR_C, CON, hsbSpeed.Value

sets the power of the motors to the present value (hsbSpeed.Value) of the scrollbar.

The next line of the procedure
txtSpeed.Text = Str(hsbSpeed.Value * 10) + "mph"
first multiplies the hsbSpeed.Value property by ten. It then converts the result into a string uSihg the
function, and it finally concatenates the letters ‘mph’ to this string.
35

Note that setting the power of the motors to zero does not actually turn off the motors. Instead the motc
have a power setting of close to zero, but is not actually zero.

Extending further

Our program at present works fine, but when building the robot the two motors have to be placed specifica
at output ports A and C (i.e. 0 and 2). You ideally want to be able to specify which of the motors you us
correspond to which output.

To do this you will be introduced to option buttons and frames.

Option buttons

An OptionButtoncontrol displays an option that can only be on or off. If you place option buttons on a form
and then run the program, the option buttons are associated with one another and therefore you can ¢
select one option button at any one time. However sometimes you will need to have two or more groups
option buttons on the same form. To do this you need td~temes,which will allow the program to
distinguish between the differing groups.

Frames

A Framecontrol provides an identifiable grouping for controls. You can also BEsznaeto subdivide a form

functionally - for example, to separate group©gptionButtoncontrols, as we wish to do here.

To group controls, first draw tHeramecontrol (the icon with ‘xy’ in the top left corner), and then draw the

controls inside th&rame Do not double-click on the control to place it on the form, rather you should draw

it on the form.

> Remember to draw the frame on the form before any of the option buttons. Draw the left optiol
buttons in the left frame and the right option buttons in the right frame.

Note: to select multiple controls on a form, hold down the CTRL key while using the mouse to click on thi

controls you want to select. You can then go to the properties window and give them the same properties,
font or colour.

w. Remote Control M=l

C oo Left Motar ... Right Motar
Lol Motor A Lo Motor A

SRR JIHEL 3 iy

&+ Matar C

Figure 3.3

You would like you form to

B S Exit :
ZZJZ resembletheoneshown

36

Control Type Property Value

Frame Name fraLeft
Caption Left Motor
Option Button Name optLeftA
Caption Motor A
Value True
Option Button Name optLeftB
Caption Motor B
Option Button Name optLeftC
Caption Motor C
Frame Name fraRight
Caption Right Motor
Option Button Name optRightA
Caption Motor A
Option Button Name optRightB
Caption Motor B
Option Button Name optRightC
Caption Motor C
Value True
Table 3.3

37

Option Explicit
Dim strLeftMotor, strRightMotor As String

Private Sub cmdFwd_MouseDown(Button As Integer, Shift As Integer, X As
Single, Y As _ Single)

PBrickCtrl.SetFwd strLeftMotor + strRightMotor

PBrickCtrl.On strLeftMotor + strRightMotor ‘Drive forward
End Sub

Private Sub cmdFwd_MouseUp(Button As Integer, Shift As Integer, X As Single,
Y As _ Single)

PBrickCtrl.Off strLeftMotor + strRightMotor
End Sub

Private Sub cmdRev_MouseDown(Button As Integer, Shift As Integer, X As
Single, Y As _ Single)

PBrickCtrl.SetRwd strLeftMotor + strRightMotor

PBrickCtrl.On strLeftMotor + strRightMotor
End Sub

Private Sub cmdRev_MouseUp(Button As Integer, Shift As Integer, X As Single,
Y As _ Single)

PBrickCtrl.Off strLeftMotor + strRightMotor
End Sub

Private Sub cmdExit_Click()
PBrickCtrl.CloseComm
End

End Sub

Private Sub cmdRight_MouseDown(Button As Integer, Shift As Integer, X As
Single, Y _ As Single)

PBrickCtrl.SetFwd strLeftMotor

PBrickCtrl.On strLeftMotor
End Sub

Private Sub cmdRight_MouseUp(Button As Integer, Shift As Integer, X As Single,
Y As _ Single)

PBrickCtrl.Off strLeftMotor
End Sub

38

Private Sub cmdLeft_MouseDown(Button As Integer, Shift As Integer, X As
Single, Y As _ Single)

PBrickCtrl.SetFwd strRightMotor

PBrickCtrl.On strRightMotor
End Sub

Private Sub cmdLeft_MouseUp(Button As Integer, Shift As Integer, X As Single,
Y As _ Single)

PBrickCtrl.Off strRightMotor
End Sub

Private Sub Form_Load()
PBrickCtrl.InitComm ‘Initialises the PC-Serial com port.
strLeftMotor = MOTOR_A
strRightMotor = MOTOR_C
PBrickCtrl.SetPower strLeftMotor + strRightMotor, CON, 2
End Sub

Private Sub hsbSpeed_Change()
PBrickCtrl.SetPower strLeftMotor + strRightMotor CON, hsbSpeed.Value
txtSpeed.Text = Str(hsbSpeed.Value * 10) + “mph”

End Sub

‘ Changing the left motor to the selected option button
Private Sub optLeftA_Click()

strLeftMotor = MOTOR_A
End Sub

Private Sub optLeftB_Click()
strLeftMotor = MOTOR_B
End Sub

Private Sub optLeftC_Click()
strLeftMotor = MOTOR_B
End Sub

39

How the program works

The statement

Dim strLeftMotor, strRightMotor As String
declares two variables which will hold strings.

In the Form_Load event procedure the variabsdrLeftMotor is assigned the valuMlOTOR_A and
strRightMotor is assigned the vallddOTOR_C. This is because if you look at Table 3.3 more closely, you
will see that the value for theptLeftA option button is true, meaning that this is the option button selected
when the program starts. You then want the left motor to be correctly set (in this 849¢@&_A). The
same applies to the right motaptRightC is the default value).

In the previous code, the constaM®TOR_A andMOTOR_C were used throughout. These have now been
replaced by the variablesrLeftMotor andstrRightMotor respectively.

The event procedure
Private Sub optLeftA_Click()
strLeftMotor = MOTOR_A
End Sub
is triggered whenever tlaptLeftA option button is clicked. ThetrLeftMotor variable is then assigned the
valueMOTOR_A (the motor connected to output A is now configured to drive the left motor).

Exercise:
You have so far only implemented the code for selecting the left motor. Now enter the code for selecting t
right motor yourself.

Save and execute your program.

> Place the electrical leads on different outputs and select these outputs from the option buttons
reconfigure them.
> Operate your robot with the controls you placed earlier.

You may have noticed that unexpected things happen when the scrollbar is moved by dragging the bar it
instead of by using the arrows at each side (i.e. the value in the text box does not change until you h:
released the mouse button). To remedy this, place the code which follows into your program.

> In the Objectcombo box at the top of t@odewindow, selechsbSpeed
> In theProcedurexcombo box, selecroll.
A shell for the procedure will appear.

Private Sub hsbSpeed_Scroll()
PBrickCtrl.SetPower strLeftMotor + strRightMotor, CON, hsbSpeed.Value
txtSpeed.Text = Str(hsbSpeed.Value * 10) + “mph”

End Sub

40

Using Sensors

As well as featuring the ability to control outputs, such as motors, the RCX also has the ability to recei
external inputs from sensors. There are several types of sensors that can be used with the RCX, incluc
light, angle, touch and temperature sensors. Only light and touch sensors are supplied with the basic Lt
Mindstorms kit (one light sensor and two touch sensors). Note that, unlike motors, the orientation of tt
connector leads to the touch sensor does not make a difference and that the light sensor has a built in elect
lead. You therefore don’t need to use an extra lead.

A light sensor A touch sensor An electrical lead to connect your
sensors and motors to the RCX

To enable the programming of the sensors within Visual Basic, they must first be configured. The type
sensor used and the format in which you want the results returned must be supplied before you can poll (re
the sensor.

You are now going to configure the switch sensor.

To create a new program, you need to create a new project.

> Start Visual Basic. If th&lew Projectwindow appears, click on th@ancelbutton to close it.

> SelectNew Projecfrom theFile menu.

> Select the Lego icon in théew Projectwindow, then click the OK button.

> As you did before, save all of your new files, this time with the n&easors Select
C:\VBLEGO\ChO04 as the location to save your form.

> Built the frmSensors form according to Table 4.1.

w. Sensors Hi=]

Figure 4.1

g Start by building this
ik
simple form.

42

Control Type Property Value

Form Name frmSensors
Caption Sensors

Command Button Name cmdPoll
Caption &Poll

Command Button Name cmdExit
Caption E&xit

Text Box Name txtPoll
Alignment 2 - Center
Caption (Leave Blank)

Table 4.1
> Insert the following code.

"All Variables MUST be declared
Option Explicit

Private Sub cmdExit_Click()
PBrickCtrl.CloseComm
End

End Sub

Private Sub cmdPoll_Click()
" set input 1 to switch

PBrickCtrl.SetSensorType SENSOR_1, SWITCH_TYPE

' set text box to value of Sensor 1

txtPoll. Text = PBrickCtrl.Poll(SENVAL, SENSOR_1)

End Sub

Private Sub Form_Load()

PBrickCtrl.InitComm 'Initialises the PC-Serial communication port.

End Sub

43

How the program works
ThecmdPoll_Click() event procedure places the present value (as a boolean value, i.e. either true or fals
of the sensor placed on Input 1 in the text box txtPoll.

PBrickCtrl.SetSensorType SENSOR_1, SWITCH_TYPE

This lines indicates that you should have the touch sensor connected to Input 1, and you want to set the 1
of this sensor t&witch You could also configure the SENSOR_2 and SENSOR_3 inputs. The possible type:
of sensors, their numerical values and constant types are given in Table 4.2:

Number Constant Sensor Type
0 NO_TYPE None
1 SWITCH_TYPE Switch
2 TEMP_TYPE Temperature
3 LIGHT_TYPE Light
4 ANGLE_TYPE Angle Table 4.2

The sensor is now configured properly and can be polled.

txtPoll.Text = PBrickCtrl.Poll(SENVAL, SENSOR_1)
Here you want the contents of txtPoll to be set to the current value of the sensor.

The Poll method can be used to retrieve a variety of different types of information from the RCX. The first
parameter indicates what you want to retrieve, in your case the value of a S&i$@A[) and the second
parameter is which of the three sensors you want to poll, here it is Sensor 1.

The second parameter can differ for different source vaues
(e.g. if the source was a VAR the second parameter would be a
number between 0 and 31).

O
+~
O

44

Source

Running the Program
Save the project.

YV V V V V V

w N B O

(0]

10
11
12
13
14
15

Constant

VAR
TIMER
CON
MOTSTA

RAN
KEYS
SENVAL

SENTYPE
SENMODE
SENRAW
BOOL
WATCH
PBMESS

Number

0-31
0-3

0,1,2

0,1,2

0,1,2
0,1,2
0,1,2
0,1,2
0
0

Description

Variable 0-31.
Timer 0-3.

Motor status. The information is packed:

Bit 7: ON/OFF 1/0

Bit 6: Brake/Float 1/0

Bit 5: Output no. HiBit

Bit 4: Output no. LoBit

Bit 3: Direction CW/CCW 1/0

Bit 2: PowerLevel: Most significant bit
Bit 1: PowerLevel

Bit 0: PowerLevel: Least significant bit

Program No. i.e. Actual program selected.
SensorValue. Value measured at an input. Depends on the
actual mode of operation.
SensorType. Tells what type of sensor the input is set-up for.
SensorMode. Tells what mode the input is set-up for.
SensorRaw i.e. the analogue value measured at the input.
SensorBoolean. Returns the Boolean state of the input.
Watch. Integer where MSB = hours and LSB = minutes.
Returns the PBMessage stored internally in the RCX.

Table 4.3

Connect a touch sensor to Input 1.

Turn on the RCX.
Run your program.

Click on the Poll button and a ‘0’ should appear in the text box.
Press and hold in the switch and again press Poll, a ‘1’ should now appear in the text box.

B.

~

O
<

On the RCX you can click on théewbutton and this will

give the sensor value for a particular input, or the reading ‘or
an output. By default it is set at Watch which displays the
time. By pressing th¥iewbutton once, the display gives a
reading for Input 1, by pressing it again it gives the readin)
for Input 2, and so on until it returns to the Watch display.

45

The mode in which the sensor readings are returned can be changed. TheSe&tkodorMode instructs
the RCX as to which mode you would like the data returned in. The general form of the method is
SetSensorMode (Number, Mode, Slope)

Numberis a value of either 0, 1 or 2 which refer to SENSOR_1, SENSOR_2, and SENSOR_3 respectivel

Modeis a value which is defined by tivumbercolumn in Table 4.4.

Number Constant Sensor Mode Description
0 RAW_MODE Raw Raw analogue data (0-1023).
1 BOOL_MODE Boolean TRUE or FALSE
2 TRANS _COUNT _MODE Transition All transitions are counted (both positive

and negative transitions are counted).

3 PERIOD_COUNT_MODE Periodic Counter Only counts whole periods (one negative
edge + a positive edge - or vice versa).

4 PERCENT_MODE Percent Sensor value represented as a percentage of
full scale.
5 CELSIUS_MODE Celsius Temperature measured in Celsius.
6 FAHRENHEIT_MODE Fahrenheit Temperature measured in Fahrenheit.
7 ANGLE_MODE Angle Input data counted as Angle steps.
Table 4.4

Slopeis only used if the boolean mode is chosen and can be set to 0 otherwise.

If Boolean mode of operation is selected, Slope indicates how to determine TRUE and FALSE i

SensorValue. This also affects the way counters react on input changes.

0: Absolute measurement (below 45% of full scale = TRUE, above 55% of full scale = FALSE). i.e. ¢
pushed switch (low voltage measured) results in a TRUE state.

1-31 Dynamic measurement. The number indicates the size of the dynamic slope. i.e. the necessary cha
of bit-counts between two samples, to get a change in the Boolean state.

for a touch sensor Booleanand changes the mode for a lig 1t
sensor toPercent Always invoke theSetSensorType
method before th8etSensorMode method.

~.
\))
d~

O TheSetSensorType method automatically changes the mo ie

46

It would be nice if you could tell the RCX at run time in which mode we wanted our answer returned usin
combo boxes and list boxes.

Both list box controls and combo box controls allow you to have a list of items from which the user can mal
a selection. The differences between the two are minimal.

- 'You can type text into a combo box at run time.

- Both have different styles e.g. a list box cannot have a drop down list of values but a combo box can. Tt
are used in different situations.

w, Combo Boxes and List Boxes _ O] x|

Cantype here = M
Taronta

Mew Orleans -
wolverhampton Mew Jerze

a
Gialway ‘waterford j

Bonmahion

Figure 4.2

Kozsovo Birmingham &
v| Bunclodagh
L4

h Seattle j

Combo Boxes and List Boxes.

> Double-click on theaComboBoxcontrol in the tool box.

> Set itsNameto cboMode

> To place values in the combo box use ltist property. Click on thé.ist property and then click on
the down arrow in the right hand cell.

> Type in the texRaw.

> Then press Ctrl + Enter which moves the cursor on to the next line.

> Type in the texBoolean

> Press the Return key or click anywhere outside of the list to complete the operation.

[cboMode ComboBax

Alphabetic Categorized]

|
=l
Left 1500 -
{List) =
Locked Raw
Mouselcon Boalean|
MousePointer J
(OLEDragMode .
OLEDropMade Figure 4.3
RightToLeft |
Sorted TS j
List) .
Returnsfsets the items contained in Chang'ﬂg the Style Of ||St

a control's lisk portion,

in the Properties box.

> Change thétyleto 2 - Dropdown List.

The code

Option Explicit
Dim iMode As Integer

Private Sub cmdExit_Click()
PBrickCtrl.CloseComm
End

End Sub

47

Private Sub cmdPoll_Click()
' Find the mode
If cboMode.Listindex = O Then
iMode = RAW_MODE
Elself cboMode.ListIndex = 1 Then
iMode = BOOL_MODE
End If
'set input 1 to a switch
PBrickCtrl.SetSensorType SENSOR_1, SWITCH_TYPE
' return result format as boolean
PBrickCtrl.SetSensorMode SENSOR_1, iMode, O
' set text box to value of Sensor 1
txtPoll.Text = PBrickCtrl.Poll(SENVAL, SENSOR_1)
End Sub

Private Sub Form_Load()

PBrickCtrl.InitComm

'Initialises the PC-Serial communication port.

cboMode.Text = cboMode.List(0)
End Sub

' Display first item.

At the beginning of the code a variable called iMode of type integer is declared, this will be used to store tl

mode value corresponding to the selected value in the combo box.

' Find the mode
If cboMode.ListIndex = O Then
iMode = RAW_MODE
Elself cboMode.ListIndex = 1 Then
iMode = BOOL_MODE

End If

The first value in the combo box has a value of zero, and the next one has a value of one and so on.
propertyListindexcontains the value currently selected in the combo box. If its value is zero the variable

iMode is assigned the vall®RAW_Mode and if its value is one, the variable is assigB&OL_MODE.

PBrickCtrl.SetSensorMode SENSOR_1, iMode, O

Here the sensor mode is set to the value stored in iMode which is derived from the value in the combo b

cboMode.Text = cboMode.List(0) ' Display first item.
This line of code places the first item in the list as the default option when the program starts.

> Save the project.
> Run the project.
> Select both options and press the switch button for each one. Record the change in values.

48

Most of the code that you have written for the previous example is unnecessary. This is because if you t:
a look at the index values of the combo box and the numeric values of the different modes, you will see ti
they match provided that they are entered in the same order.

Add the following to the.ist property of the combo box in the same way as described before.

- Transition Counter

- Periodic Counter

- Percent

- Celsius

- Fahrenheit

- Angle

The list box should now look like Figure 4.4 (note: Raw entry is present but out of view).

|choMode ComboBox
Alphabetic Categorized]

x|
Left 1650 -
(List) -
Locked Boolean -

Mouselcon Transition Counter
MousePainter Periodic Counter
Percent .
OLECragMode | -alsius F|gure 4'4

OLEDropMode |Fahrenheit
Right ToLeft Angle

Sorted TanE Vlﬂ
- Your list should now contain the

Returnssets the items contained in a control's
list portion,

same items as appear here.

Modify your code to look like:

Option Explicit

Private Sub cmdExit_Click()
PBrickCtrl.CloseComm
End

End Sub

Private Sub cmdPoll_Click()
'set input 1 to a switch
PBrickCtrl.SetSensorType SENSOR_1, SWITCH_TYPE
' return result format as boolean
PBrickCtrl.SetSensorMode SENSOR_1, cboMode.ListIndex, O
‘ set text box to value of Sensor 1
txtPoll.Text = PBrickCtrl.Poll(SENVAL, SENSOR_1)
End Sub

Private Sub Form_Load()

PBrickCtrl.InitComm 'Initialises the PC-Serial communication port.
cboMode.Text = cboMode.List(0) ' Display first item.
End Sub

49

> Save the project again.
> Run the project.
> Click onPoll.

w. Sensors Hi=]

Figure 4.5

If you run your project, you should now be
g able to poll the RCX in different modes.

> The Angle, Celsius, and Fahrenheit options are not applicable to the Switch sensor.

Light Sensor
It would also be nice if you could choose the type of sensor at an input at run time.
Place another combo box on the form.

Control Type Property Value
ComboBox Name cboType
List None
Switch
Temperature
Light
Angle
Style 2 - Dropdown List
Table 4.5

This time, when entering the code, use the value of the cboType.Listindex when setting the sensor type, i
make the first value (None) the default choice at program start.

> Save and run your program again.
> Switch the positions of the sensors, set the sensor mode and sensor type, and poll the values.

50

Block Sorter
You are now going to create a program that will be able to differentiate between objects of two differet

colours.

> Save your project.

> SelectNew Projecfrom theFile menu.

> Select the Lego icon in tidew Projectwindow, then click the OK button.

> Ensure that the Form1 window of the new project is the selected window and then frBile the

A\

Y VYV

menu, selecBave Forml As

Using theSave Adglialog box which appears, select C:\VBLEGO\Ch04 as the location to save your
form.

Call the formSorter and then click on th8avebutton.

SelectSave Project Akom theFile menu.

The first file to be saved is the .bas file. Enter the file nant&oagr and click on theSavebutton

(the location should already be the Ch04 folder).

You are then asked to save the .vbp file. Call $uger also and click on th8avebutton.

The Timer Control

Each time a command button is pressed, an associated event procedure is executed ("triggered"). If you v
a certain action to occur at regular intervals automatically, you can make useTwhéneontrol. A timer
control allows a procedure to be executed at fixed time intervalsintérwal property dictates how long
these intervals are. It can have a value between 0 and 65,535. This value is measured in millisecond:s
second equals 1,000 milliseconds). A timer control is invisible at run time and is only visible on the form ¢
design time.

The Shape Control

The shape control is useful for drawing several shapes:
- Rectangles

- Squares

- Circle

- Oval

- Rounded Square
- Rounded Rectangle

51

Build the form according to Table 4.6.

Control Type Property Value
Form Name frmSorter
Caption Block Sorter
CommandButton Name cmdExit
Caption E&xit
Timer Name tmrPoll
Enabled True
Interval 1000
TextBox Name txtPoll
Text (Blank)
Label Name IblPoll
Caption Light Sensor
Shape Name shpBlock
BorderStyle 0 - Transparent
FillStyle 0 - Solid
Table 4.6

The completed form should look like the one in Figure 4.6.

w. Block Sorter

Figure 4.6

Your completed form should contain

the same components as shown here.

53

> Type the following code:

Option Explicit

Private Sub cmdExit_Click()
PBrickCtrl.CloseComm
End

End Sub

Private Sub Form_Load()
With PBrickCtrl
JInitComm 'Initialises the PC-Serial communication port.
.SetSensorType SENSOR_1, SWITCH_TYPE ' Sensor 1 is a switch

.SetSensorType SENSOR_3, LIGHT_TYPE ' Sensor 3 is a Light
.SetSensorMode SENSOR_3, RAW_MODE, O ' Change mode from Percent to

Raw
End With

End Sub

> Go intoObjectview, double-click on the timer control that you have placed on the form and enter the

following code:

Private Sub tmrPoll_Timer()

If PBrickCtrl.Poll(SENVAL, SENSOR_1) =1 Then
txtPoll = PBrickCtrl.Poll(SENVAL, SENSOR_3)
shpBlock.FillColor = QBColor(2) ' green

Else
shpBlock.FillColor = QBColor(0) ' black

End If

End Sub

Executing the Sorter Program

> Save the project.

> Run the project.

The shape is coloured black. Press in the switch and you will notice that the value of the textbox changes
the raw value of the Light Sensor and the shape will turn green. When you release the switch the shape tt
to black again and the textbox remains at the last value sensed.

How the Sorter Program works

When the form is loaded the sensors are configured as one switch and one light sensor. Notice the use o
keywordWith. This statement saves you the work of having to type the RioratkCtrl in front of all the
methods called after it.

54

ThetmrPoll_Timer() procedure executes every 1,000 ms (1 second). The first line of code

If PBrickCtrl.Poll(SENVAL, SENSOR_1) =1 Then

checks to see if the switch has been pressed. If it is pressed (i.e. equals 1)

txtPoll = PBrickCtrl.Poll(SENVAL, SENSOR_3)

shpBlock.FillColor = QBColor(2) ' green

the reading of the light sensor is assigned toTth@BoxtxtPoll and the colour of the shape is changed to
green. If the switch button is not pressed the colour of the shape remains as black.

The QBColor() function returns a colour corresponding to a value in Table 4.7.

Number Colour Number Colour

0 Black 8 Grey

1 Blue 9 Light Blue

2 Green 10 Light Green

3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta

6 Yellow 14 Light Yellow

7 White 15 Bright White Table 4.7
Exercise:

Modify the Sorter program so that it will be able to differentiate between two different colour Lego blocks
placed under the light sensor. The light sensor readings should vary depending on the colour over which i
placed. TheShapecontrol should reflect the colour of the block under the light sensor.

All of your code changes should be implemented in titverPoll_Timer() procedure. A shell for this
procedure may look like:

Private Sub tmrPoll_Timer()
' Declare integer to hold value of light sensor
Dim iLightRaw As Integer
If PBrickCtrl.Poll(SENVAL, SENSOR_1) =1 Then
iLightRaw = PBrickCtrl.Poll(SENVAL, SENSOR_3)
txtPoll = iLightRaw
" Insert your own code to find out the colour of the block here
End If
End Sub

~.
\V
~
© @ You can place arif...Then...Else statement inside another
Z one, this is called nesting. Also because iLightRaw is decli red
inside the procedure and not in tk&neral Declarations
section as before, it can only be used in this specific procec ure.

55

Manipulating Variables

Variables

There are 32 global variables within the RCX and they can store values in the range -32768 to 32767 (if y
are familiar with computer architecture you may have already guessed that these variables are in f
registers). There are various methods for manipulating these variables, variables can be set, added
subtracted from, multiplied, divided etc. To find out the value of a variable they can be polled.

You are now going to manipulate some of the internal variables.

> SelectNew Projectfrom theFile menu.

> Select the Lego icon in thidew Projectwindow, then click the OK button.

> As you did before, save all of your new files, this time with the nafaeables. Select
C:\VBLEGO\ChO05 as the location to save your form.

> Built the frmVariable form according to Table 5.1.

57

Control Type Property Value
Form Name frmVariable
Caption Variable Manipulation
CommandButton ~ Name cmdSet
Caption &Set Variable
Font System size 10
CommandButton ~Name cmdpoll
Caption &Poll Variable
Font System size 10
TextBox Name txtSetVar
Alignment 2 - Center
Font System size 10
Text (Leave Blank)
TextBox Name txtSetVal
Alignment 2 - Center
Font System size 10
Text (Leave Blank)
TextBox Name txtPollVal
Alignment 2 - Center
Font (Choose Font of your Choice)
Text (Leave Blank)
TextBox Néme txtPollVar
Alignment 2 - Center
Font (Choose Font of your Choice)
Text (Leave Blank)
Label Name IblSet
Alignment 2 - Center
Caption To
Font System size 10
Label Néme IbIPoll
Alignment 2 - Center
Caption Gives
Font System size 10

58

Table 5.1

w. Variable Manipulation (_ O]

Figure 5.1

Again, begin by creating a form
similar to that shown.

Type in the following code:

" All Variables must be declared
Option Explicit

Private Sub cmdExit_Click()
PBrickCtrl.CloseComm
End

End Sub

Private Sub cmdPoll_Click()

' Poll Variable to find out Value

txtPollVal.Text = PBrickCtrl.Poll(VAR, Val(txtPollVar))
End Sub

Private Sub cmdSet_Click()

' Set Value of Variable

PBrickCtrl.SetVar Val(txtSetVar), CON, Val(txtSetVal)
End Sub

Private Sub Form_Load()
PBrickCtrl.InitComm
End Sub

Save your project.

Run your project.

Turn on the RCX.

Poll for the value contained in Variable 15.
Set the value of Variable 15 to 3333.

Now poll Variable 15 again.

YV V V V V VY

The variable 15 will have been changed to 3333.

59

Explanation of code

A variable is set using the statement:

PBrickCtrl.SetVar Val(txtSetVar), CON, Val(txtSetVal)

The SetVar function is of the foridetVar(VarNo, Source, Number). The contents of the textbox
txtSetVar (or any textbox) is a string, but you need to convert this into a number to satisfy the SetVar methc
To do this, the functioNal() is used. The functiongar andStr are complements of one other:

Str(34456) = "34456" Numberd String
Val("34456") = 34456 String[0 Number

The first argument of theBrickCtrl.SetVar method is the variable number (0-31) that you wish to set. The
second argument states that the third argument to follow will be a constant, and the third argument itsel
the actual value to assign to the variable number.

To poll a variable:

txtPollVal.Text = PBrickCtrl.Poll(VAR, Val(txtPollVar))

Here you tell the RCX that you would like to poll a variable, and then you tell it which variable you would
like to poll. In this case you would like to poll the numeric value of the txtPoll variable.

Note that in the line of code above in order to assign the value return€dRyyVal(txtPollVar) to
PBrickCtrl.Poll, we must enclose it in brackets. This is becauseViiétxtPollVar) method must be
executed first.

Run the program again:

> Turn on the RCX.
> Set Variable 23 to 50000.

An error occurs because this number is too big (> 32767), so click on the End button to dosw® thialog
box.

> Set variable 40 to 245.
Another error occurs because the number of the variable has to be between 0 and 31.

> Exit the program.

Message Boxes

Sometimes when a program wishes to inform the user that an event has just occurred, it will display
message box on the screen, usually with an OK button for the user to acknowledge the message. In Vis
Basic you can use the MsgBox statememt to create your own message boxes. For example, if you he
command box called cmdMessage you could associate with it a message box using a statement similar tc
one below.

Private Sub cmdMessage_Click()
MsgBox "Your program has executed successfully", vbExclamation, "Success"
End Sub

This code would generate the message box in Figure 5.2 after the cmdMessage box had been clicked.
60

| Figure 5.2

3 “Y'our program has executed successfully
The message box which
has just been created.

Before polling a variable, you want to ensure that the number is in the range 0 - 31. To implement this, y:
need to use alf ... Then ... Else statement.

Modify thecmdPoll_Click procedure resemble the code below, filling in the code for the error message bo»
yourself.

Private Sub cmdPoll_Click()
If Val(txtPollVar) < O Or Val(txtPollVar) > 31 Then
' OQutput appropriate message here using the MsgBox statement
Else
txtPollVal.Text = PBrickCtrl.Poll(VAR, Val(txtPollVar))
End If
End Sub

Run the program:

> Save your program.

> Turn on the RCX.

> Run the program.

> Poll the variable 41.

An error box should appear informing you of your mistake.

o Walue entered must be between 0 and 31

Figure 5.3

An error box message.

61

How the program works
The first line of code in themdPoll_Click() procedure is
If Val(txtPollVar) < O Or Val(txtPollVar) > 31 Then

There are two conditions tested here.
1. Whether the numeric value of txtPollVar is less that zero.
2. Whether the numeric value of txtPollVar is greater than thirty one.

If either one of these conditions is true then the value is out of bounds, and we therefore use thelkeyword
to enforce this.

The statement could also by written as

If Val(txtPollVar) >= 0 And Val(txtPollVar) <= 31 Then

This statement checks that the value is greater than or equal to zero and, and the same time, less than or
to thirty one. As it is necessary for both to be true Athé keyword is used here.

The first method can be viewed as

If Condition Then
Error has occurred
Else Everything OK

And the second method says

If Condition Then
Everything OK
Else Error has occurred

Exercise

Improve the program further to also

- Check if the variable being set is between 0 and 31

- Check if the value the variable is being set to is in the range -32768 to 32767.
Again use a message box to inform the user of the error.

62

Finding the Values stored in all of the variables

Many occasions arise when we are programming when we wish to perform an operation more than once.
example if you were to build a robot which repeatedly did the same thing, we would use what is called ¢
iterative loop (‘iterative’ means ‘repeatedly’).

One example of an iterative loop is thhile ... Wend loop.

Dim i As Integer

i=0

While i < 10
Textl = Str(i) +" "
i=i+1

Wend

In this example, the integer i is initially assigned the value 0. When the program encouni¥tsléhe
statement, it checks to see if the condition<(10) is true or false. At this stage it is true, and so i is
incremented by one, so now 1. TheWend statement signifies the end of the code which is to be repeated.
At this stage the program jumps back to Wkile statement and again tests i, which is equal to 1, so the
value of i is again incremented. This process is repeated entiD, and the test fails. At this stage the value
of i is 9, and the program continues from the next statement aftéfethe statement.

A better form of loop, which clarifies exactly how many times we wish to carry out an operation is the
For...Next loop. The following is an example.

Dim i As Integer
Fori=0To 10

Textl = Str(i) +" "
Next i

After i has been declared as an integer, the program entdrsrthe Next loop. The value of i is assigned

to 0 and the loop is told to execute for the valdds 10. The indented line prints the value of i adext

I increments the value of i repeatedly until it reaches ten. The loop is then complete. When this loop
finished the value of i is 10.

There exist another two forms of loop, which are similar. They ar®¢he. While ... Loop and theDo

... Loop ... Until. For example:

The loop on the left will eventually print out the value 9 when it is finished. The loop on the right will also
print out 9 at the end of the loop, however there is a difference between the two.

63

Dim i As Integer Dim i As Integer

i=0 i=0

Do While i < 10 Do
Textl = Str(i) +"" Textl = Str(i) +""
i=i+1 i=i+1

Loop Loop While i < 10

The diiference between the two forms of loop is that the left loop performs the true/false test before the lo
is performed, whereas the loop on the right tests after the loop has been carried out. The implications of t
can best be shown with an example. In the new code segments below, the value of i is declared as 20 ins
of 0 as previously.

Dim i As Integer Dim i As Integer

i =20 i =20

Do While i < 10 Do
Textl = Str(i) +"" Textl = Str(i) +""
i=i+1 i=i+1

Loop Loop While i < 10

Because the loop on the left performs the check first, and i is not less than 10, there will be no output to |
text box. In the loop on the right, the text box will display the value 20, as the check for the loop only come
at the end of the loop.

We would now like a program to read out all the values stored in the RCX's thirty two variables. To take eas
of the thirty two variables individually and output its value would be a long and boring task. Fortunately, you
can employ the While ... Wend statement to help you.

Add the following controls to the form.

Control Type Property Value

CommandButton Name cmdPollAll
Caption Poll &All

TextBox Name txtAllVar
Font (Choose Font of your Choice)
Multiline True
ScrollBars 2 - Vertical
Text (Leave Blank)*

Table 5.2

* Because of théMultiline property being set to True, this box now behaves like_isteproperty for the

combo box.
64

Figure 5.4

Add the extra components
to your form.

Type in the following code:

Private Sub cmdPollAll_Click()
Dim iCounter As Integer
Dim strAllVariables As String
Dim strCurrentLine As String
Dim strLFCR As String

strLFCR = Chr(13) + Chr(10)

iCounter =0

While iCounter <= 31
strCurrentLine = Str(iCounter) + ": " + Str(PBrickCtrl.Poll(VAR, iCounter))
strAllVariables = strAllVariables + strLFCR + strCurrentLine
iCounter = iCounter + 1

Wend

txtAllVar.Text = strAllVariables

End Sub

There are several variables declared at the start:

- Dim iCounter As Integer - Used to count in the While ... Wend loop

- Dim strAllVariables As String - Will contain all the variables polled (so far)
- Dim strCurrentLine As String - Contain the present variable value

- Dim strLFCR As String - Return

The string strLFCR is used to move the next variable output on to the next line.

strLFCR = Chr(13) + Chr(10)

Chr(13) is the carriage return character, &lur(10) is the line feed character. As you will soon see, the
txtAllVar text box displays a long string that is spread over several lines. You will spread the string ove
several lines by inserting the LFCR variable between the lines.

You want theWhile ... Wend loop to begin at zero and count up to thirty one. This is achieved by setting
the iCounter variable to zero before entering the loop, andWhele condition being less that or equal to
thirty one. The statement:

strCurrentLine = Str(iCounter) + ": " + Str(PBrickCtrl.Poll(VAR, iCounter))

You want the stringtrCurrentLine to contain the variable number and its value. The code above first gets

the variable number, then adds a colon to the end of the number and finally appends the value of the varia
65

The strCurrentLine is then added to thgtrAllVariables string along with astrLFCR which forces the
current line on to a line of its own.
Finally the text boxxtAllVar is assigned the value sfrAllVariables.

In Chapter Three you learned how to useTimeer control to poll the RCX at regular intervals to read the
value of a sensor. The Active-X Spirit control can do this polling (looking for changes in the RCX’s variable:
only) for you automatically.

> Place a command button on your form and catihidAutoPoll, enter the texA&uto Poll in its
Captionproperty field.
> Enter the following code.

Private Sub cmdAutoPoll_Click()
PBrickCtrl.SetEvent VAR, 6, MS_200 'Setup the autopoll
End Sub

This code sets up the autopolling feature on Variable 6, with the time interval for the autopoll set to 2C
milliseconds.

> Ensure that you are in ti@deview.
> Choose PbrickCtrl from th®bjectcombo box at the top left of the code window.
> Choose VariableChange from tReocedurecombo box at the top right of the code window.

> Type in the following code:

Private Sub PBrickCtrl_VariableChange(ByVal Number As Integer, ByVal Value As Integer)
' Display the autopolled data in a message box
MsgBox Str(Value), vbInformation, "Variable " + str(Number)+ " has Changed"

End Sub

If a change occurs in Variable 6, tR8rickCtrl_VariableChange event is sent to the application. Within
this you can decide as to what to do. Here you send a message box to the screen informing the user tha
variable has changed value and also the value to which it has been changed.

Execute the program

> Save and run the program.

> Turn on the RCX.

> Click on the Auto Poll button.*

> Now change the value of variable 6 to 1234.
A message box should appear.

* |f the variable (in this case 6) is not zero, then the message box will appear just after you press the Al
Poll button, if this happens just click OK and continue.

66

Chapfér
: Six l

Robots

Thus far all of the actions that the RCX has carried out have been decided upon by the computer in real ti
(i.e. as it goes along). This method is knowimanediatecontrol. You will now be introduced to another
method of downloading a program from Visual Basic to the RCX and then allowing the RCX to follow the
instructions in the program without requiring it to be positioned near the transceiver tower. When your rob
is performing tasks which have been downloaded to it and it is not receiving additional commands from ti
computer while performing these tasks, the robot is said to be actiogomously

Program Structure

There are five program slots in the RCX. Each program slot can store up to eight subroutines and ten tas
Tasks are pieces of code which can execute simultaneously (this is tawttiethsking. For example, in

this chapter you will build a robot which will be capable of navigating around objects if it has bumped intc
them. Therefore there are two tasks executing simultaneously here. One task drives the robot forward, i
another task continuously checks to see if the robot has come into contact with another object.
Subroutines are blocks of code that store code which together make up a procedure. Subroutines are opti
because you can always place these procedures inside tasks which require them. Subroutines are
because they save on program length if they are used by different parts of the program.

Start Visual Basic. If th&lew Projectwindow appears, click on the Cancel button to close it.
SelectNew Projecfrom theFile menu.

Select the Lego icon in tidew Projectwindow, then click the OK button.

Save all of your files, naming theBownload.

Select C:\\VBLEGO\ChO06 as the location to save your form.

Built the frmDownload form according to Table 6.1.

YV V V V V V

w. Download Program - O]

Figure 6.1
Download
Frogram
g The humble beginnings
ik
of our new program.
Control Type Property Value
Form Name frmDownload
Caption Download Program
CommandButton Name cmdExit
Caption E&xit
CommandButton Name cmdDownloadProg
Caption &Download Program
Table 6.1

68

70

Enter the following code:

" All Variables must be declared
Option Explicit

Private Sub cmdExit_Click()
PBrickCtrl.CloseComm
End

End Sub

' Turn on motors for 2 seconds
Private Sub cmdDownloadProg_Click()
With PBrickCtrl
.SelectPrgm SLOT_3 ' program slot 3
.BeginOfTask MAIN

.SetPower MOTOR_A + MOTOR_C, CON, 7
.SetFwd MOTOR_A + MOTOR_C
.On MOTOR_A + MOTOR_C

.Wait CON, SEC_2 ' wait 2 seconds
.Off MOTOR_A + MOTOR_C
.EndOfTask
End With
End Sub

Private Sub Form_Load()
PBrickCtrl.InitComm 'Initialises the PC-Serial communication port.
End Sub

Run the Program

> Save the project.

Turn on the RCX.

Execute the program.

Click on the Download Program button.

The number on the far right of the RCX display should be 3, which indicates that program slot 3 i
the currently selected one.

> Press the Run button.

YV V V V

The robot should move forward for two seconds and then stop.

71

How the program works

For thecmdDownloadProg_Click() event, the keywortlith is again used, and as explained earlier this
saves you from typing out the wolRbrickCtrl before each of its methods included in the program.

The line.SelectPrgm 2 selects program slot 3 (note: in Visual Basic they are numbered O - 4, but in the
RCX they are numbered 1 - 5). Within slot 3 you then want to occupy a task, and in this case Task 0 (MAI
is a constant, equal to 0) is chosen.

.BeginOfTask MAIN

The code between this arfthdOfTask describes what happens when program 3 is run. In this case Motors
1 and 3 are set to full power, and set to move in a forward direction. The two motors are then turned on &
after two seconds they are turned off again.

You are now going to add some error detection to you program. So far you have taken the optimistic vie
and assumed that every command issued has worked. Let’s examine what would happen if the program is
downloaded properly to the RCX.

Error handling
The DownloadDone event is sent from the ActiveX control as soon as the download to the RCX is finishe
or an error has prematurely terminated the download. The event is of the form

PBrickCtrl_DownloadDone(ByVal ErrorCode As Integer, ByVal DownloadNo As Integer)

If the ErrorCode equals zero then the download has been successful, but if it equals one, then the downlo
has failed andDownloadNo addresses which task number or subroutine number the error flag refers to.

To code this event

> Select PbrickCtrl in th@©bjectcombo box at the top of the code window.

> Select DownloadDone from thlirocedurecombo box.

If an extra procedure appeared when you clicked on the first combo box, you can simply delete it. Then en
the code which follows.

Private Sub PBrickCtrl_DownloadDone(ByVal ErrorCode As Integer, ByVal_ DownloadNo
As Integer)
If ErrorCode = O Then ' Download is Successful
PBrickCtrl.PlaySystemSound SWEEP_DOWN_SOUND
MsgBox "Download Successful", vbinformation, "Status”
Else ' Download Failed
MsgBox "Download Failed", vbCritical, "Status"
End If
End Sub

72

Execute the program

> Save the project.

> Run the project.

> Turn off the RCX.

> Click on the Download Program button.

After a few seconds a message box will appear with an error message informing you that the download |
failed.

> Click on OK to close the message box.
> Now switch the RCX on.
> Click on the Download Program button again.

If the download is successful the RCX plays $S#&EEP_DOWN sound and a message box appears
informing you that the download was successful.

Flow Control Structures

The flow control structures that can be used in Download mode are similar to those that can be used it Vis
Basic. There are three basic types:

- Loop

- While

-If ... Else

Loop
The Loop structure repeats all the commands within the structure a specified number of times.

PBrickCtrl.Loop CON, 4
PBrickCtrl.PlaySystemSound BEEP_SOUND
Pbrickctrl.EndLoop

The first part of the structuré.§¢op) contains the amount of times that the structure is to be repeated. Here
the source is a constant and the value of this constant is four. Notice here Hawophstructure is less
ambiguous than either thhile ... Wend construct or théor ... Next construct as regards the number of
iterations that we want to carry out. However, there is a compromise in that in other forms of iterative loc
the variable that we use to control the loop’s iterations could also be used in the body of the loop. In o
earlier examples we printed the current value of the iteration control variable. Witbdpeconstruct we

lose this ability to do this simply.

The EndLoop method decrements the value passed in (in this case, four to begin with) by one and the
checks if the resultant value is equal to zero. If it is, the loop terminates and the next command is execut
otherwise the commands within the loop are carried out again.

The above code plays tliEEP_SOUND four times.

A special case is where theop CON, FOREVER statement is used to begin the loop. This means that the

loop is to be repeated infinitely.
73

While

TheWhile ... EndWhile control structure is similar to tH@o While ... Loop control structure encountered
earlier in Visual Basic.

While (Sourcel, Numberl, RelOp, Source2, Number2)

The first two parameters refer the first value to be compared, and the latter two parameters refer to the sec
value to be compared. ThelOp parameter describes how the two values are going to be compared. Thert
are four possible methods of comparison.

Number Constant Description

0 GT Greater Than
1 LT Less Than

2 EQ Equal To

3 NE Not Equal To

With PBrickCtrl

.SetVar 6, CON, 1

While SENVAL, SENSOR_1, EQ, VAR, 6
.PlaySystemSound BEEP_SOUND

.Wait CON, MS_500

.EndWhile

End With

The RCX Variable 6 is assigned the value 1. The first value to be compared is the reading from Sensor 1, i
the second value to be compared is the number contained in variable 6 (in this case 1).
Therefore the structure states that as long as Sensor 1 is equal to 1, Begglseund every half a second.

If ... Else
The If ... [Else] ... EndIf control structure compares two values in a similar fashion t@vthée control
structure.

If(Sourcel, Numberl, RelOp, Source2, Number?2)

If the condition is true then the commands afterlfretatement are executed, and if the condition is false,
then you have the option to add Else statement or to simply end thfestructure without any alternatives.

74

With PBrickCtrl
.SetVar 6, CON, 800
JAf SENVAL, SENSOR_3, LT, VAR, 6
.On MOTOR_A
.Else
.On MOTOR_B
Endlf
End With

Here let's assume that Sensor 3 is configured in raw mode.
If the sensor reading is less that 800, then the procedure will turn on motor A, otherwise (i.e. Sensor read
greater or equal to 800) turn on motor B.

Using a touch sensor.

You are now going to build a robot that tries to get around obstacles in its path.
Build the robot.

> Create a new command button on the form and cathdTouch.

> Change the&aptionto &Touch Program.

> Type in the following code:

Private Sub cmdTouch_Click()
With PBrickCtrl
.SelectPrgm SLOT_4 '‘Program Slot 4
.BeginOfTask MAIN
.SetSensorType SENSOR_1, SWITCH_TYPE
.SetPower MOTOR_A + MOTOR_C, CON, 3
.Loop CON, FOREVER
JAf SENVAL, SENSOR_1, EQ, CON, 1 'If sensor = pressed
.SetRwd MOTOR_A + MOTOR_C
.Wait CON, SEC_1

.Off MOTOR_C
.Wait CON, SEC_1 ' Allow robot to turn
.Off MOTOR_A

.Else
.SetFwd MOTOR_A + MOTOR_C
.On MOTOR_A + MOTOR_C

EndlIf

.EndLoop
.EndOfTask
End With

End Sub

75

Save your project.

Turn on the RCX.

Run your project.

Download the program to the RCX by clicking on the Touch Program button.
Place the RCX on the ground or on another suitable surface, and run the program.

YV V V V V

Notice that when the robot bumps into something it reverses and tries to go around the object.

How the Touch Program works.
Firstly program slot 4 in the RCX is chosen as a the destination for the program. At the beginning of the me
task the touch sensor is set-up appropriately as is the power setting for each of the motors involved. 1
statement
.Loop CON, FOREVER
causes the program to go into an infinite loop. In this loop the following is repeatedly carried out:
If the touch sensor is pressed
Reverse the robot for a second, and then rotate the robot for another second.
Else
Move the robot forward.

Exercise:
In the previous program, change the mode of the sensor to raw mode and also make the necessary cha
in the If condition.

Also, as you can see, while the touch sensor is not pressed, the code is commanding the RCX to go forw

even though it is already going forward at the time. Optimise the code so that the robot will only go forwar
at the beginning of the task and also only after a turning manoeuvre has been carried out.

76

, Chapter
Seven

A More Controllable Robot

In this chapter you are going to program a robot to follow a black line. The poster that comes with th
Mindstorms kit has an oval black line drawn on it and you are going to program a robot to follow this line.

> Open up the project you created in the last chapter.
> Create a new command button on the form and cathdLight.

> Change th&aptionto &Light Program .

F
| START

The robot used in Chapter Six will again be used here with some modifications.

78

Remove the touch sensor
and bumper from the front
of the robot.

Add a light sensor to the
front of the robot, pointing

downwards and positioned
only a few centimetres from
the ground.

You want to set up the sensor ports correctly to begin with.
Enter the following code:

Private Sub cmdLight_Click()
With PBrickCtrl
.SelectPrgm SLOT_4
.SetSensorMode SENSOR_3, RAW_MODE, O
.SetSensorType SENSOR_3, LIGHT_TYPE
.SetPower MOTOR_A + MOTOR_C, CON, 7
.SetVar 5, CON, MS_200
End With
End Sub

The previous code places the program in program slot 4 of the RCX. Sensor 3 is a light sensor in Perc

mode, and the motors are set to full power. Variable 5 in the RCX is B _t800 and the reason for this

will be seen later on.

Variable 5 does not have much meaning at the moment but you would like to be able to refer to it i

something more meaningful that the number 5. To do this place the following code in the first line of you

procedure

Const ArcTime =5

And in the existing code farmdLight_Click() change the following

.SetVar ARC_TIME, CON, MS_200

This declaration of constants makes the program easier to read. You will especially notice this with long

programs.

> Save and Run you program.

> Turn on your RCX.

> Click on the Light button to download your program to the RCX.

> Using theView button on the RCX, choose to view the reading of Sensor 3 (The arrow on the LCD
screen should now be pointing to sensor 3).

> Using the poster from the Mindstorms kit, run the light sensor over the white and black colours to ge
their raw value readings.

Enter in the following code:

Private Sub cmdLight_Click()
Const ARC_TIME =5 ' Naming var 5
Const LIGHT_THRESH =6 ' Naming var 6

With PBrickCtrl
.SelectPrgm SLOT_4
.BeginOfTask MAIN

.SetVar ARC_TIME, CON, MS_50
.SetVar LIGHT_THRESH, CON, XXXX '‘Enter your value here

79

.SetSensorType SENSOR_3, LIGHT_TYPE

.SetPower MOTOR_A + MOTOR_C, CON, 6
.On MOTOR_A + MOTOR_C
.Loop CON, FOREVER
.While SENVAL, SENSOR_3, GT, VAR, LIGHT_THRESH

.Off MOTOR_C
.Wait VAR, ARC_TIME
.EndWhile
.On MOTOR_C
.EndLoop
.EndOfTask
End With
End Sub
> Save and run your project.
> Download the Light program to the RCX.
> Place the RCX on the poster with the light sensor above the black line pointing in a clockwist
direction.
> Press Run.

The RCX should now follow the black line around the poster.

How the program works

The program firstly names two of the variables in the RCXARE_TIME and LIGHT_THRESH.
ARC_TIME defines the amount of time in between checking if the robot is currently on the black line anc
LIGHT_THRESH defines the reflectance threshold value between black and white (or green).

The two motors are started, and the task goes into an infinite loop. If, in this loop, the light sensor detects t
the robot has gone off the line it stops motor C, waits for a period of time (defined at the beginning of tF
program as RC_TIME) and then checks again if the robot is back on the black line. It performs this
repeatedly until the robot has found the black line, and then it re-enables motor C again. It then repeats
looping procedure, checking if the robot has lost track of the line again.

Exercise:

At the moment the robot can only follow the black line in a clockwise direction. Try to modify the code sc
that the robot can follow the line in any direction. Hint: sweep one way, and then the other until the blac
line is found, increasing the angle of the arc each time, by modifying the ARC_TIME variable.

A further exercise:
Program the robot to stay within the black oval.

80

The Proximity Robot

When you used the touch sensor to avoid obstacles it involved a rather crude method, and therefore did
always work. It would be a better solution if the robot could sense that it was about to hit sotveditriag

it hit it. There may seem to be no obvious method towards accomplishing this at first, but further resear
into the workings of the light sensor have shown it to be somewhat sensitive to infra-red light. Using this ne
knowledge, a robot that can sense obstacles can be built. A source for the infra-red light is needed, but
know that the RCX communicates to the transceiver tower using infra-red light. We can therefore transn
infra-red light signals from the RCX at regular intervals by usingst#hedPBMessage method. The light
sensor could then take advantage of large fluctuations in its readings to sense if it was near an object.

> Using the same robot again, remove the angle bracket from the light sensor and place the light sen
on top of the RCX’s infra-red transmitter.

> On the form create a command button calbetdProxy, and change its caption &Proximity
Program.
> Type in the code which follows.

81

Private Sub cmdProxy_Click()
Const LAST_READING = 10
Const FLUCTUATION =11

With PBrickCtrl
.SelectPrgm SLOT_5

.BeginOfTask MAIN
.SetVar FLUCTUATION, CON, 100
StartTask 1
StartTask 2

.EndOfTask

.BeginOfTask 1
.Loop CON, FOREVER
.SendPBMessage CON, O
.Wait CON, MS_10
.EndLoop
.EndOfTask

.BeginOfTask 2
.SetSensorType 2, LIGHT_TYPE
.SetSensorMode 2, RAW_MODE, O
.SetFwd MOTOR_A + MOTOR_C
.On MOTOR_A + MOTOR_C
.Loop CON, FOREVER
.SetVar LAST_READING, SENVAL, SENSOR_3
.SumVar LAST_READING, VAR, FLUCTUATION
JAf SENVAL, SENSOR_3, GT, VAR, LAST_READING
" Obstacle encountered
' Move robot to avoid obstacle
"and then start 2 motors again
EndlIf
.EndLoop
.EndOfTask

End With
End Sub

82

> Save and run your project.
> Download the Proximity program to the robot.
> Run the program.

When the robot approaches an obstruction, it should reverse itself and attempt to go around it.

Two constants are declared at the beginning of the procedure to make the code mode readable

Const LAST_READING = 10

Const FLUCTUATION =11

Within the Main task theFLUCTUATION variable is set. This value can vary depending on how sensitive
you want your robot to be. This is the first time that you have used more that one task. Sihemttask

is the only one automatically started, you need to manually start all other tasks.

You want to have two tasks running. One task periodically sends out an infra-red signal and the other c
interprets the readings of the light sensor.

.BeginOfTask 1
.Loop CON, FOREVER
.SendPBMessage CON, O
.Wait CON, MS_10
.EndLoop
.EndOfTask

Here an infra-red signal is transmitted by the RCX every 10 ms usirgetidPBMessage method.

The second task begins by setting the sensor type and mode (Raw mode (0 - 1023) has a higher resolt
than Percent mode (O - 100) i.e. it is more accurate). Both motors are then switched on, moving in a forwe
direction. The task then enters an infinite loop:

.Loop CON, FOREVER
.SetVar LAST_READING, SENVAL, SENSOR_3
.SumVar LAST_READING, VAR, FLUCTUATION
JAf SENVAL, SENSOR_3, GT, VAR, LAST_READING
' Obstacle encountered
' Move robot to avoid obstacle
'and then start 2 motors again
Endlf
.EndLoop

The LAST_READING variable is assigned the current sensor reading of the light sensor. The
FLUCTUATION variable value (100 in this example) is then added ta. &%l _READING variable.

If the sensor reading is ever greater thantA8T_READING variable value, then there is something in
close proximity to the light sensor. Program the robot to avoid any obstacle in its path.

83

Delving Deeper into
the RCX

Arrays

Most of the code you've seen so far has worked with very little data. Up to this point, you have been learni
about variables and control structures. An array isn't much more than a list of variables. You will see in tF
chapter how the naming conventions for array variables vary a little (but not much) from the namin
conventions for regular non-array variables. With arrays, you can store many occurrences of similar da
With non-array variables, each piece of data has a different name, and it can be difficult to track mai
occurrences of data.

An array is a list of more than one variable with the same name. An example of a variable might be

Dim Result As Integer

This declaration declares a single varid®dsult as an integer. This variable could refer to a student’s result
in an exam. If there were more than one student in the class, then declaring a variable for each student wc
be a long and boring task. This is where arrays become useful.

The different values (in this case the elements of the array) are distinguished from each other by a nume
subscript. For instance, instead of a different variable name (Resultl, Result2, Result3, Result4, and so ¢
the associated data are given the same variable name (Result) and are differentiated by subscripts.
Resultl Result(1)

Result2 Result(2)

You may wonder where the advantage of using a array is seen here. The column of array names has a r
advantage over the old variable names. The number inside the parentheses is the subscript number of
array. Subscript numbers are never part of an array name; they are always enclosed in parentheses and
serve to distinguish one array element from another. If you had to calculate the average of a series
examination results using only variables, it would be necessary for you to type out all of the variable nam
individually, whereas with arrays, you can udeoa ... Next loop to change the variable names.

Given forty students

Using variables
iTotal = Resultl + Result2 + Result 3 + Result4 + ... + Result40
iAverage = Total/40

Using Arrays
For iCounter = 1 To 40
iTotal = iTotal + Result(iCounter)
Next Counter
iAverage = Total/40

As you can see, even with only 40 students, there will be far less code using arrays.

85

Declaring Arrays

Dim MyArray(10) As Integer

This array will contain 11 element§gArray(0) to MyArray(10)). 0 is known as thlower boundand 10
is known as thepper bound

The lower bound can also be specified at the declaration stage
Dim MyArray (10 To 20) As Integer
This declares an array of eleven integers with a lower bound of 10 and an upper bound of 20.

Multidimensional Arrays

A multidimensional array is an array with more than one subscript. A single-dimensional array is a list ¢
values, whereas a multidimensional array simulates a table of values. The most commonly used table i
two-dimensional table (an array with two subscripts). Following from the student example, if the student s
more that one exam (say six), you could use a multidimensional array to store the results.

Dim MyMultiArray(1 To 40, 1 To 6)

This is similar to declaring a table with forty rows and six columns, each row refers an individual student ar
each column to a result.

The datalog

The datalog is an area set within the RCX, it allows you to store readings from:

- Timers

- Variables

- Sensor Readings

- Watch (Time)

To use the datalog feature, you must first set the size of the datalog area you wish to use. This is done u:
the SetDatalog(Size) method. The size refers to the number of elements you wish to store. Each elemer
takes up 3 bytes of space.

Anytime within the program that you want to store a value in the datalog, uBataegNext(Source,
Number)

Source Number

0 VAR 0-31
1 TIMER 0-3 TIMER_1, TIMER_2, TIMER_3, TIMER_4
9 SENVAL | 0-2 SENSOR_1, SENSOR_2, SENSOR_3
14 WATCH 0

Then when you program is finished, you can upload the information from the RCX using the
UploadDatalog(From,Size) method.

86

>

>

Create a new Lego project.
Save it aDatalog.
Create a form from the following table:

w,. Datalog

i ClearDatalog |

Control Type Property Value
Form Name frmDatalog
Caption Datalogging
Command Button Name cmdSetDLSize
Caption &Set Datalog
Command Button Name cmdClearDL
Caption &Clear Datalog
Command Button Name cmdUploadDL
Caption &Upload Datalog
Command Button Name cmdDownload
Caption &Download Progam
Text Box Name txtDLSize
Text 5
Label Name IbiDatalog
Caption (Leave Blank)
List Box Name IstDatalog
Command Button Name cmdExit
Caption E&xit
sDatalog _______________________ =10l
Download I i
Frogram 1l I
Upload
b iR
Figure 8.1

The Datalog form.

Table 8.1

> Enter the following code:

Private Sub cmdClearDL_Click()
PBrickCtrl.SetDatalog O ' Clear Datalog
End Sub

Private Sub cmdDownload_Click()
With PBrickCtrl
.SelectPrgm SLOT_4 ' Program 4

.BeginOfTask MAIN
.SetSensorType SENSOR_2, LIGHT_TYPE
.SetVar 10, CON, 1234
.Loop CON, 3
.DatalogNext TIMER, TIMER_4
.Wait CON, SEC_1
.EndLoop
.DatalogNext SENVAL, SENSOR_2
.DatalogNext VAR, 10
.DatalogNext TIMER, TIMER_4
.EndOfTask
End With
End Sub

Private Sub cmdExit_Click()
PBrickCtrl.CloseComm
End

End Sub

Private Sub cmdSetDLSize_Click()
If PBrickCtrl.SetDatalog(Val(txtDLSize.Text)) Then
IbIDatalog.Caption = "Datalog size set to " + txtDLSize.Text
Else
IbIDatalog.Caption = "Not enough memory available"
End If
End Sub

Private Sub cmdUploadDL_Click()
Dim arr As Variant
Dim iCounter As Integer
' Download Datalog to arr array
arr = PBrickCtrl.UploadDatalog(0, Val(txtDLSize.Text)+1)

88

If IsArray(arr) Then
For iCounter = LBound(arr, 2) To UBound(arr, 2)
IstDatalog.AddItem " Type: " + Str(arr(0, iCounter)) + _
" No. " + Str(arr(1, iCounter)) + _
" Value " + Str(arr(2, iCounter))
Next iCounter
Else
MsgBox "Upload NOT a valid array"
End If
End Sub

Private Sub Form_Load()
PBrickCtrl.InitComm
End Sub

Execute the program

Save your program.

Execute your program.

Connect a light sensor to Input 2.

Turn on the RCX.

Place the value 7 in the text box and click on the Set Datalog button.

Click on the Download Program button to download the program to the RCX.

Press the Run button.

When the program is finished running, click on the Upload Datalog button (do not place a numbe
greater that 50 in the textbox when clicking on the Upload Datalog button).

VV VYV V VYV V VY V

Seven entries should appear in the list box, the datalog entry with index 0 always contains the current size
the datalog, which is guaranteed to be at least one since the current size entry is considered to be part o
datalog. The other entries are the values placed in the datalog usigtthegNext method. Entries 2, 3

and 4 are the results logging the timer values, the next entry is the sensor reading, and then the variable v
followed by the timer value again.

Notice when you click on the Set Datalog button, a quadrant appears on the right side of the LCD screen

the RCX. When the run button is pressed this circle fills up (i.e. more quadrants appear). To clear the datal
click on the Clear Datalog button.

89

How the Datalog program works

ThecmdSetDLSize_Click procedure sets the size of the datalog to the value in the text box txtDLSize. If
there is not enough memory available the metSetDatalog(Val(txtDLSize.Text)) fails and an error
message appears in the label. The maximum size varies but is generally around 2000.

The downloaded function placed the value T{MER_4 in the datalog every second, three times in
succession, and a sensor reading is then placed in the datalog. A variable reading followed by another tit
reading are then entered into the datalog.

ThecmdUploadDL procedure uploads the datalog from the RCX into an array.

arr = PBrickCtrl.UploadDatalog(0, Val(txtDLSize.Text) + 1)

You want to start at the first element in the datalog (0), and continue until you reach the end of the datalc
The value 1 is added because the first element in the datalog contains the current size, i.e. six entries
added to the list, and therefore there are seven elements to be uploaded from the list.

The array returned is a two dimensional array. The array will contain three rowsténidize + 1
columns.

If the array is a valid array:
For i = LBound(arr, 2) To UBound(arr, 2)
IstDatalog.AddItem " Type: " + Str(arr(0, i)) + _

"No. " + Str(arr(1, i)) + _

"Value " + Str(arr(2, 1))
Next i
The lower bound of the array is found (i.e. the position of the first element) and the upper bound is also fou
(i.e. the position of where the last element). Then for each element between these two values there is an e

Type Number| Reading

0 VAR 0-31 | Readings returned
1 TIMER 0-3
9 SENVAL |0-2
14 WATCH 0

The datalog is cleared by setting the datalog size to zero. The quadrant now disappears from the LCD scr
on the RCX.
PBrickCtrl.SetDatalog O ' Clear Datalog

90

Graph Program

You are now going to create a program that will draw a graph from the data returned from th
UploadDatalog method. In this program you will be introduced to menus, procedures and picture boxes.
> Create a new Lego Project.

> Save the project &raph.

> Save the form and module @saph also.

You would like to have a much space a possible on the form for your graph. To achieve this, you wi
incorporate menus into your program

Creating a menu for the Graph program:
> Build the Graph form according to Table 8.2.

Control Type Property Value

Form Name frmGraph
Caption The Graph Program

Table 8.2

> Select the main form.
> SelectMenu Editorfrom theToolsmenu.

Menu Editor

Capkion:] QK

Mame: 1 Caniel

Index: Sharkcut: ({Mone)
HelpContextID: [0 MeqaotiatePosition: |0 -pone -

™ Checked W Enabled W visible [windowList

ﬂ:]JJ ext Insert | T helete

Figure 8.2

The Menu Editor.

M

> In the Captiontext box type&Datalog.
> In the Nametext box typemnuDatalog.

Menu Editor

Zaption:]&Data\og

Mame: |mnubatalog
Indeyx! Sharkcut: (Mone)
HelpContextID: |0 MeggtiskePosition: |0 -Mone

™ checked W Enabled ¥ visible I~ windowList

._]_]JJ ,Tl Insert | Delete Figure 8 3

The Menu Editor
with entries.

91

&
R
@

4

> Click on the Next button of thiglenu Editor the next row is now highlighted.
> In the Captiontext box type&Set Datalog.

> In the Nametext box type thennuSet

Because the Set Datalog is an item in the Datalog menu, it must be indented.

> Click on the Right arrow button of thdenu Editor

Menu Editor
Caption:]&Set Datalog K
Mame: 1mnuSet Cancel
Index:]— Sharkcut: ({Mone) =
HelpContextID: 107 MeqatiatePosition: lm
™ checked ¥ Enabled v visible [windowList
ﬂ ﬂﬂ ext | Insert | Delete |

&Datalo

Figure 8.4

The item SetDialog

must be indented.

Click on theNextbutton.

In the Captiontext box type&Upload Datalog.
In the Nametext box typemnuUpload.

Click on theNextbutton again.

In the Captiontext box type&Clear Datalog.
In the Nametext box typemnuClear.

Click on theNextbutton.

In the Captiontext box typeE&xit .

In theNametext box typemnuExit.

YV VV V V VYV VYV V V

The Datalog menu is now completed.
You now want to create lzoad menu.

> Click on theNextbutton of theMenu Editorwindow.

> In the Captiontext box typeD&ownload.

> In the Nametext box typemnuDownload.

Since this is a menu title, and not a menu item, you need to remove the indent.

Click on the Left arrow button of tidenu Editorto remove the indent.

Click on theNextbutton.

In the Captiontext box type&Proximity Program .

In the Nametext box typemnuProxy.

Click on the right arrow button to indent this item.

You are now finished completing the design of your menu, the Menu editor should now look like Figure 8.t

YV V V V V

92

>
>

Menu Editor

Capkion:]&Proximity Program QK
Iame: 1mnuPr0xy Cancel
Index:]— Sharkcut: ({Mone) =
HelpContextID: 107 MeqatiatePosition: lm
™ checked ¥ Enabled v visible [windowList

Insert | Delete |

«e@Set Datalog

@l Ipload Datalog
wo@Clear Datalog
Bt

Download

- &Proximity Program

Figure 8.5

The finished entry into
the Menu Editor.

Click on the OK button of thiMenu Editor

Save your project.

The frmGraph should now look like figure 8.6.

If you click on Datalog or Download you can see their menu bars appear.

>
>

>

w. The Graph Program H=1E3 |
Datalog Download

Figure 8.6

The completed graph
as defined earlier.

Save and Execute your program.

You can click and choose options in both menus, but of course nothing happens as you do not he

any code attached to the menu items at present.

Click on the X icon in the top right corner of the Graph program to terminate the program.

Creating a Submenu

If you notice that in the program you have a menu item called Set Datalog. You know that for thi
SetDatalog method a parameter must be supplied that tells the ActiveX control the size you want to set tt

datalog to. You will now create a submenu for this item.
Select theMenu Editorform theToolsmenu.

V'V VYV YV VY V VYV

Select the Upload Datalog item and then click on the Insert button.

In the Captiontext box of the menu editor ty@five.
In theNametext box typemnuFive.
Click on the right-arrow button to indent the item further.

Select the Upload Datalog item again and click on the Insert button.

In the Captiontext box of the menu editor ty@Ten.

In the Nametext box typemnuTen.

Click on the right-arrow button to indent the item further.
Insert the following menu items as previously:

93

Caption Name

F&ifty mnufifty

&One Hundred mnuOneHundred
Fi&ve Hundred mnuFiveHundred

> Save your project.

Placing Controls on your form

> Select thePicture Boxcontrol from the toolbox and draw it on your form.
> Change thélameproperty topicGraph.

> Your frmGraph should now look like figure 8.7.

w. The Graph Program

Datalog Download

Figure 8.7

Your newly

.. modified graph_

Coding the Graph Program
> Enter the following code in your program:

'‘All Variables Must be Declared
Option Explicit

Private Sub Form_Load()
PBrickCtrl.InitComm
End Sub

You are now going to enter some code for the Exit menu item.

> In Design mode and in th@bjectview click on the Datalog menu and choose the Exit item.
This is like double-clicking on a command button, the shell fontinelExit_Click procedure now appears
in the Codewindow.

> Enter the code overleaf:

94

Private Sub mnuExit_Click()
PBrickCtrl.CloseComm
End

End Sub

> Save and execute your program.
> Select the Exit item form the Datalog menu.
The program now terminates.

Procedures

Under the Set Datalog sub menu, there are several choices for the size of the datalog to be created. W
setting the datalog, it has to be checked if the datalog was created (i.e. was there enough space availa
Instead of having to write out the code to check this for each option, you will create a procedure to check tl
for you.

> In the Codewindow, selecAdd Procedurdrom theToolsmenu.

> In the Nametext box typeSetDatalog.

The Add Procedure dialog box should look like Figure 8.8.

Add Procedure
[Type
[Cancel
| sub « proparty o | Figure 8.8
" Function " Event .
[~ Scope
| & public * Private The Add Procedure
I~ all Local variables as Statics dlalog bOX

A shell for the function now appears.

Public Sub SetDatalog()

End Sub

> Now you need to change the first line of the SetDatalog procedure to

Public Sub SetDatalog(Size As Integer)

End Sub

95

> Enter the following code:

Public Sub SetDatalog(Size As Integer)
If PBrickCtrl.SetDatalog(Size) Then
MsgBox "Datalog Size set to " + Str(Size), vbInformation
Else
MsgBox "Not enough memory available", vbCritical
End If
End Sub

> In the Object view select Set Datalog Five from the datalog menu
An event procedure shell should appear

Private Sub mnuFive_Click()

End Sub

> Enter the following code:

Private Sub mnuFive_Click()
SetDatalog 5
End Sub

This statement executes tlxetDatalog procedure you just created passing in the number five as a

parameter. When the procedure is executing the Size variable is made equal to 5.
> Repeat the above procedure for all the other items in the Set Datalog sub menu.

Adding the code for the Proximity Program.
> In the Objectview select the Proximity Program from the Download menu.

> Enter the following code, note that this code is almost the same as that in the last chapter except

the addition of another task.

96

Private Sub mnuProxy_Click()
Const LAST_READING = 10
Const FLUCTUATION =11

With PBrickCtrl
.SelectPrgm SLOT_5

.BeginOfTask MAIN
.SetVar FLUCTUATION, CON, 100
StartTask 1
StartTask 2

.EndOfTask

.BeginOfTask 1
.Loop CON, FOREVER
.SendPBMessage CON, O
.Wait CON, MS_50
.EndLoop
.EndOfTask

.BeginOfTask 2
.SetSensorType 2, LIGHT_TYPE
.SetSensorMode 2, RAW_MODE, O
.SetFwd MOTOR_A + MOTOR_C
.On MOTOR_A + MOTOR_C
StartTask 3
.Loop CON, FOREVER
.SetVar LAST_READING, SENVAL, SENSOR_3
.SumVar LAST_READING, VAR, FLUCTUATION
JAf SENVAL, SENSOR_3, GT, VAR, LAST_READING
.SetRwd MOTOR_A + MOTOR_C
.Wait CON, SEC_1
.Off MOTOR_C
.Wait CON, SEC_1
.SetFwd MOTOR_A + MOTOR_C
.On MOTOR_C
Endlf
.EndLoop
.EndOfTask

97

.BeginOfTask 3
.Loop CON, 100
.DatalogNext SENVAL, SENSOR_3
.Wait CON, MS_100
.EndLoop
.Off MOTOR_A + MOTOR_C
.StopAllTasks
.EndOfTask
End With
End Sub

Adding code for the Upload Datalog item
> In the ObjectView select Upload Datalog from the Datalog menu.
> Enter the following code:

Private Sub mnuUpload_Click()
Dim iTime, i, iCounter As Integer
Dim arr As Variant
Dim iX, iUpper, iLower As Integer
Dim iMinX, iMaxX, iMinY, iMaxY As Integer

arr = PBrickCtrl.UploadDatalog(0, 1)
iUpper = arr(2, 0)

'‘Define Graph Boundaries
iMinX = 0O: iMaxX = iUpper
iMinY = 500: iMaxY = 850
iX=0 "Startat x co-ord =0

picGraph.Cls
picGraph.Scale (iMinX, iMaxY)-(iMaxX, iMinY)
picGraph.ForeColor = QBColor(4)

iTime = Int(iUpper / 50) 'times to upload

For iCounter = 0 To iTime
iLower = iCounter * 50

If iUpper <= 50 Then

arr = PBrickCtrl.UploadDatalog(iLower, iUpper)
Else

arr = PBrickCtrl.UploadDatalog(iLower, 50)

98

End If
iUpper = iUpper - 50

If IsArray(arr) Then
For i = LBound(arr, 2) To UBound(arr, 2)

iX=iX+1
picGraph.Line -(iX, arr(2, i))
Next i
Else
MsgBox "Not a Valid array"
End If
Next iCounter
End Sub
> For the Clear Datalog item enter the following code:

Private Sub mnuClear_Click()
SetDatalog O 'clear datalog
End Sub

Execute the Program.

Save your project.

Execute your project.

Build the Proximity robot as in the last chapter.

From the Datalog menu select Set Datdlogone Hundred.

Select Proximity Program from the download menu to download the program to the robot.
Press the Run button on the RCX.

When the robot program in finished, select Upload Datalog from the Datalog menu.

VV VYV YV VYV VY

A graph should appear in the picture box like the one in figure 8.9.

w, The Graph Program =]
Datalog Download

Figure 8.9

A sample graph as

depicted by our program.

99

Here the robot encountered two obstacles. The slower the robot was approaching, and retracting from
obstacles wil dictate how wide the spikes are.

> Exit the program, selecting Clear Datalog from the Datalog menu beforehand if you want to clear tr
datalog.

How the Graph program works
When as the light sensor begins taking readings in the Proximity Program, task 3 is started.
.BeginOfTask 3
.Loop CON, 100
.DatalogNext SENVAL, SENSOR_3
.Wait CON, MS_100
.EndLoop
.Off MOTOR_A + MOTOR_C
.StopAllTasks
.EndOfTask

Task 3 executes the above loop 100 times, each time it loops it places the light sensor reading in the data
When it has looped 100 times all tasks are stopes (i.e. the program stops).

The mnuUpload_Click procedure places the graph it the picture box. The statements

arr = PBrickCtrl.UploadDatalog(O, 1)

iUpper = arr(2, 0)

download the first item in the datalog into the arr arfdyper is then assigned the value of the number of
elements in the datalog. The procedure then defines the co-ordinate boundaries of the picture box:
iMinX = 0: iMaxX = iUpper

iMinY = 500: iMaxY = 850

iX=0 'Startatxco-ord=0

The x-axis contains the number of elements in the datalog and the y-axis contains the light sensor readi
for each element. The picture box is then cleared:

picGraph.Cls

picGraph.Scale (iMinX, iMaxY)-(iMaxX, iMinY)

picGraph.ForeColor = QBColor(4)

The scale defines the boundaries of the picture box, the first co-ordinate is the top left co-ordinate and i
second one is the bottom right co-ordinate. The forecolor setting simply sets the colour of the graph which
red in this example.

The statement

iTime = Int(iUpper / 50) 'times to upload

setsiTime to the number of extra times that the array has to be downloaded (remember that these can o
be downloaded in blocks of 50 or less). If 69 elements had to be downloaded the datalog has to
downloaded in two chunks; a chunk of 50 elements and then a chunk of 19 elements. TheiVaneble
would equal 1 here indicating that one extra download is necessary.

100

A For loop is then entered
For iCounter = 0 To iTime
iLower = iCounter * 50

If iUpper <= 50 Then
arr = PBrickCtrl.UploadDatalog(iLower, iUpper)
Else
arr = PBrickCtrl.UploadDatalog(iLower, 50)
End If
iUpper = iUpper - 50
'code here explained below
Next iCounter

The loop starts counting at 0 and stops at the valuEfe. iLower contains the value of the start element
to be downloaded. If three chunks of elements are to be downloaded, then this will firstly equal O, then !
and finally 100. Thdf ... Then ... Else structure states that if 50 or less elements are to be downloaded
then download that exact number, but if more that fifty are to be downloaded, download a chunk of fift
elements and set the number of remaining elements to be downlodgeer) to the lastUpper value
minus 50) as they have now been downloaded.
If IsArray(arr) Then

For i = LBound(arr, 2) To UBound(arr, 2)

iX=iX+1
picGraph.Line -(iX, arr(2, 1))
Next i

Else

MsgBox "Not a Valid array"
End If

If the array arr is a valid array (i.e. downloaded successfully) then the lower and upper bounds of the arr
are found.iX contains the x co-ordinate of the last point plotted on the graph, this is then incremented by or
So as to plot the endpoint of the next line. The statement

picGraph.Line -(iX, arr(2, 1))

only has one co-ordinate. When only one co-ordinate is supplied, it defines the endpoint of the line and t
start point is where the last line plotted ended (the CurrentX, CurrentY co-ordinate).

Exercise

Modify the code for than Proximity Program so that it stops emitting infra-red light (task 1) and change th
range (MinY andiMaxY) as necessary (if the graph goes too high or too low).

If you wanted to change the amount of readings taken, change the amount of times the loop in Task 3.\
can also modify the frequency at which the readings are placed in the datalog.

101

Networking and
Synchronisation

If you have more that one RCX in your possession then you can write programs to allow communicate wi
each other. This is achieved using BendPBMessage method. This method can be used to transmit a
number between 0 and 255 using the RCX's infra-red transmitter. Any other RCX near the transmitting RC
can receive this message and store it internally. The RCX that does the majority of transmitting is usua
called theMasterand the receiving RCX is called #ave To read a message received, the RCX has to use
the Poll method. RCX’s can also clear a message stored in its internal memory usiheetiftBMessage
command. This command sets the internal message to '0'".

You are going to first create a simple program that will show you one RCX sending a message to anothe

> Start up in the usual way, or reuse the program that you created in Chapter Six.
> Save your project @&CXComm.

Control Type Property Value
Form Name frimMRCXtoRCX
Caption RCX Communications
Command Button Name cmdMaster
Caption &Master Download
Command Button Name cmdSlave
Caption &Slave Download
Command Button Name cmdPoll
Caption &Poll
Command Button Name cmdExit
Caption E&xit
Text Box Name txtPoll
Text (Leave Blank)
Table 9.1

103

> Enter the following code:

Private Sub cmdExit_Click()
PBrickCtrl.CloseComm
End

End Sub

Private Sub cmdPoll_Click()
txtPoll = Str(PBrickCtrl.Poll(PBMESS, 0))
End Sub

Private Sub cmdMaster_Click()
With PBrickCtrl
.SelectPrgm SLOT_3

.BeginOfTask MAIN
.SendPBMessage CON, 123
.EndOfTask

End With
End Sub

Private Sub cmdSlave_Click()
With PBrickCtrl
.SelectPrgm SLOT_4

.BeginOfTask MAIN
.ClearPBMessage
‘Wait for Message
.While PBMESS, 0O, EQ, CON, O
.Wait CON, MS_50

.EndWhile
.PlaySystemSound SWEEP_DOWN_SOUND
.EndOfTask
End With
End Sub

Private Sub Form_Load()
PBrickCtrl.InitComm
End Sub

104

Save your program

Run your program

Turn on one RCX (call this the Master) and click on Master Download.
Turn off the Master and turn on another RCX (call this the Slave).
Click on Slave Download.

Turn on the Master again.

Press the Run button on the Slave followed by the one on the Master.

YV V V V V VYV V

You should hear thEYSTEM_SWEEP DOWN sound from the Slave.

> Turn off the Master and click on thll button, the value 123 should appear in the text box. This
confirms that the message was transmitted successfully.

How the Program works
When the Master program is run, it transmits the number 123, and then ends. The Slave program is alre
executing and waiting for a message. When the Slave program receives a message it plays a sound and

Exercise:

When the Slave receives the message, make it send an acknowledgement message (e.g. '1") back t
Master, which will be waiting for an acknowledgement.

> Build a Slave robot like one of the robots you built in Chapter Three or Chapter Six.

You are now going to control the behaviour of the Slave using the Master. The Slave is required to obey thi
commands:

- Go Forwards

- Go Backwards

- Stop

> Modify the code to look like the following:

Private Sub cmdMaster_Click()
With PBrickCtrl
.SelectPrgm SLOT_3

.BeginOfTask MAIN
.ClearPBMessage
.SendPBMessage CON, 1 ‘forward
.Wait CON, SEC_3
.SendPBMessage CON, 3 'reverse
.Wait CON, SEC_3
.SendPBMessage CON, 2 'off

.EndOfTask

End With
End Sub

105

Private Sub cmdSlave_Click()
With PBrickCtrl
.SelectPrgm SLOT_4

.BeginOfTask MAIN
.ClearPBMessage

.Loop CON, FOREVER
'Wait for Message
.While PBMESS, 0O, EQ, CON, O
.Wait CON, MS_10
.EndWhile
' Turn Motors On
If PBMESS, 0, EQ, CON, 1
.SetFwd MOTOR_A + MOTOR_C
.On MOTOR_A + MOTOR_C
EndlIf
' Place code here for
' Off and
' Reverse
.ClearPBMessage
.EndLoop
.EndOfTask

End With
End Sub

Save your Program.

Run your program.

Repeat the download procedure as previously.

Run the program in Slave.

Run the program in Master.

The Slave robot moves forward for 3 seconds, then reverses for another 3 seconds before it stops.

YV V V V V

Exercise:

Again start by programming the Slave to send an acknowledgement message for each command it recei
but this time, if the Master does not receive the acknowledgement after a specified amount of time, progr:
the Master to resend the message to the Slave. You will have to decide on a protocol, e.g. what number
255) is going to be the acknowledge message).

Exercise:
Place several robots in a room moving in random patterns. Place an object on the floor, and when one rc
finds the object it should signal to the others that it has found it.

106

Mutex Objects

All the tasks being executed by a program run in parallel. This seems ideal and indeed it is, but the conc
is not as straight forward as it may seem. If, for example, one task is ordered to turn on a motor for a specif
amount of time, whilst the motor is running another task could order the motor to reverse direction. Th
situation may be desirable in some cases but in others it is not. It can be avoided by using a mutex.

A mutex object is a synchronisation object whose state is signalled (1) when it is not owned by any task, a
non-signalled (0) when it is owned by a task. Only one task at a time can own a mutex, whose name cor
from the fact that it is useful in co-ordinatingutually exclusive access to a shared resource (e.g. a motor).
For example, to prevent two tasks from controlling a motor at the same time, each task waits for ownerst
of a mutex before executing the code that effects the motor. After the task is finished with the motor, tt
mutex is released.

Mutexes are implemented using variables. A variable is set to 0 when the motor is not been used by a te
When a task needs to use a motor it waits for the variable to equal 0. When the variable equals 0 the task 1
changes the variable’s value to 1 so that it now has sole control of the motor. When finished using the mo
the task sets the variable back to O.

Private Sub cmdMutexEG_Click()
Const MUTEX = 6 'Variable 6 will be the mutex
With PBrickCtrl
.SelectPrgm SLOT_4
.BeginOfTask MAIN
.SetVar MUTEX, CON, O " Initially free
StartTask 1
StartTask 2
.EndOfTask

.BeginOfTask 1
'If task 1 wants to use a motor
.While VAR, MUTEX, EQ, CON, 1
.Wait CON, MS_10
.EndWhile
" Aquire ownership of MUTEX
.SetVar MUTEX, CON, 1
'work here with motor, then release mutex
.SetVar MUTEX, CON, O
.EndOfTask

107

.BeginOfTask 2
'If task 2 wants to use a motor
.While VAR, MUTEX, EQ, CON, 1

.Wait CON, MS_10
.EndWhile
" Aquire ownership of MUTEX

.SetVar MUTEX, CON, 1
'‘work here with motor, then release mutex
.SetVar MUTEX, CON, O

.EndOfTask

End With
End Sub

Subroutines
Subroutines are used to contain code that you find using frequently. For example, if you frequently startec

motor and then stopped a motor, you could create a subroutine. Then whenever you wanted to turn on
off the motor, you would simply call the subroutine.

Private Sub cmdSubEG_Click()
Const ONOFF = 3 'Subroutine name
With PBrickCtrl
.SelectPrgm SLOT_4
.BeginOfTask MAIN
‘code here
.GoSub ONOFF
‘more code here
.EndOfTask

.BeginOfSub ONOFF
.On MOTOR_A
.Wait CON, SEC_3
.Off MOTOR_A
.EndOfSub
End With
End Sub

108

You should not call the same subroutine from different tasks because this can lead to unexpected behavi
Subroutines are really useful for large programs with long tasks. There can be up to 8 subroutines in e:
program slot. These are numbered 0 through 7. You could also write a subroutine which would wait for
message to arrive:

Private Sub cmdSlave_Click()
Const MESSWAIT = 6 'Subroutine 6
With PBrickCtrl
.SelectPrgm SLOT_4

' Check PSMESS at 10 ms intervals for message
.BeginOfSub MESSWAIT
.While PBMESS, 0, EQ, CON, O
.Wait CON, MS_10
.EndWhile
.EndOfSub

.BeginOfTask MAIN
.ClearPBMessage
.SetFwd MOTOR_A + MOTOR_C

.Loop CON, FOREVER
‘Wait for Message
.GoSub MESSWAIT

' More code here
.ClearPBMessage
.EndLoop

.EndOfTask

End With
End Sub

109

Timers
There are four free-running timers in the RCX, with a resolution of 100ms. They can be cleared individuall
using theClearTimer method. As soon as they are cleared they start running again from 0. At any time
timer can have a value between 0 and 32767. This means that the counter can count up to roughly 3
seconds which is approximately 55 minutes. To reset a timer:

PBrickCtrl.ClearTimer TIMER_1
This restarts the timer at 0, and the timer begins to count upwards, adding one to its valdg gokey
second. To view the timer, use tRell command

PBrickCtrl.Poll(TIMER, TIMER_1)
Remember that the timer has a resolution of 100ms and/aitemethod uses a resolution of 10ms, i.e. the
timer ticks 10 times a second while the wait method ticks 100 times a second. Do not use the constants (
MS_100) to compare any values to values contained in the timers.

110

Further Information

Appendix A
Serial Communications

The Decimal, Hexadecimal and Binary number systems.

We humans use the decimal, or base ten number system. This arose from the fact that we have ten finc
However, computers do not have fingers to count on and so do not function in terms of a decimal system.
a microprocessor system, all information is stored and manipulated in terms of 1's and 0’s. This gives rise
the use of the binary, or base two number system. The reason for the use of the binary system is the sin
fact that only two numbers need to be (and indeed can be) used to represent the state of an electrical sic
‘0’ represents ‘off’ and ‘1’ represents ‘on’. Thus a number such as 1010 in binary represents an on sign
followed by off, then on, and then off again.

This is shown in diagrams as the following, where a high horizontal line is a ‘1’ and a low horizontal line it
a ‘0’. The vertical lines represent the transitions between the two states.

Therefore it is important to appreciate that all data within a computer system is represented, at least as fa
the computer is concerned, in terms of 0's and 1’s.

However, because 0's and 1's are somewhat laborious to both read and write, we instead convert the va
into hexadecimal values. Hexadecimal, or hex, takes groups of four binary bits and forms hexadecinr
representations of them. The following is a complete list of all sixteen hexadecimal digits, with binary an
decimal equivalents.

Decimal Binary Hex
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

112

Take note as to how the binary system works, and also how the decimal values from 10 to 15 are represel
by the letters A to F in hexadecimal.

It may be important to also note that the next value, 16 in decimal, is 10 in hex.

Binary to hex and hex to binary conversions involve the simple process of matching each hex digit wi
groups of four binary digits. Be aware though, that you should only convert binary numbers when the
number of digits is divisible by four, and that you should ‘fill out’ any numbers which don't fit. For example

100101001010 broken into groups of four becomes
1001 0100 1010 and is thus a straightforward conversion to
9 4 A

whereas a number such as

1010011010 if broken into groups of four becomes
1010 0110 10 with two bits left on their own.

The hex representation is therefore not

The correct method to proceed is to fill out the bits.
If we count the bits, there are only ten of them. We need at least twelve for the number of bits (twelve) to
divisible by four. Therefore we add two ‘0’ bits to the beginning of the string, which becomes

0010 1001 1010 which in hex is converted to
2 9 A which is the correct result.

You can therefore appreciate that for anything to happen within a microprocessor system, it requir
electronic mechanisms which allow us to convert between 0 and 1 according to the desired operation. |
this purpose a branch of mathematics called Boolean algebra is used. The operations are only applicabl
the binary values 0 and 1. For the following summary, assume that A is an input, B is also an input and C
the output resulting from the operation being carried out between A and B. The operations are summaris
as follows:
AND IfA=0,ANDB=0thenC=0

IfA=0,ANDB=1thenC=0

IfA=1, ANDB=0thenC=0

IfA=1,ANDB=1thenC=1

113

That is, both A and B are required to have a value of ‘1’ in order for C to have a value of ‘1’. Any othe
condition results in C having a value of O.

It may be more instructive, however, if we were to think of a logic value of ‘0’ meaning ‘switched off’ and
‘1’ as meaning ‘switched on’. We could then think of an AND statement in the context of an English sentenc
such as “If there are working batteries in the torch AND the torch is switched on, then the torch will light”
It can be easily seen that this sentence implies that if the batteries in the torch are dead, or the torch is
switched on, the torch will not shine.

Having to describe logical conditions in the way that AND is described above is somewhat laborious, and
a clearer and quicker way to represent such logical operations is through the use of truth tables.

The truth table for AND is thus:

AND

C B

R~ O Ol>
R O Fr Ol

=A.
0
0
0
1

The columns for A and B, the input columns, describe every possible state (on or off) that either of them ¢
ever be in. The column for C is the output column, i.e. the result of each of the combinations of A AND B i
represented here. It is important to note that the order in which the values for A and B are presented are
numerical binary order: 00, 01, 10, 11. It is not necessary to write the values in this way, but writing trut
tables in this order helps to ensure all possible inputs are present. This becomes increasingly important as
number of inputs increases.

The truth table for the OR operation is:

1 OR

A|B| C=A+B
010 0
0|1 1
110 1
1|11 1

This is also a straightforward truth table. If A is switched on, OR B is switched on, OR both are switched ol
then the output should also be on. A modification of this table is the exclusive-or operation, as follows:

| EXOR
A|B|C=A0B
010 0
0|1 1
110 1
1|1 0

114

Note here that when both inputs A and B are switched on (they are both ‘1’), the output C is turned of
Exclusive-or is a very useful function, although its usefulness may not be immediately apparent. However,
we extract the second and fourth lines of the table, you will see that the output, C, is the opposite of the in|
A when the input B is ‘1.

| EXOR
AlB|C=A0B
01 1
1(1 0

Also, examining the other two lines together, we see that the output C is the same as the input A when in
B is O.

| EXOR
A|lB|C=A0B
010 0
110 1

These properties can help us to easily perform certain operations.

NOT simply reverses the input to give the output, i.e.

| NOT |

R Ol>
OHJ>|

NAND is the opposite of AND, i.e it is ‘Not AND’.

NAND
B| C=

|
R = O Ol>
R O Fr, O
Or F P

115

Similarly, NOR is the opposite of OR, i.e it is ‘Not OR".

| NOR

A|B| C=A+B
0|0 1
0|1 0
10 0
1)1 0

In order for us to be able to design logic circuits, it is necessary for is to represent the Boolean log
diagrammatically. The following symbols are used to represent Boolean operations.

> D
> D

EXOR
NAND NOT
There follow two examples of sequences of logic gates.
A \ X = A AND B
B /
Y=XNORC

116

The truth table for this example would be

Logic Circuit One

A|B|C|X=A.B|Y=X+C
0[O0 O 0 1
O[O0]| 1 0 0
o(1]0 0 1
O[1]1 0 0
110]0 0 1
1101 0 0
11110 1 0
11111 1 0
Exercise:

Construct the truth table for the following logic circuit.

A \ X =AEXORB
o —) :
7 Z=XANDY

N
S

117

Data is usually transmitted in bytes, i.e. eight bits at a time. For example, 10100100 is a byte. Two byt
together are called a word. 1,024 bytes is called a kilobyte (Kb). Although ‘kilo’ generally means ‘one
thousand’, in binary 1,024 is°2Similarly, in decimal terms, ‘mega’ means one million, but in binary terms
a megabyte is 1,048,576 bytes, or 1,024 Kb. When computers perform operations, the smallest data ¢
which is carried from one location to another is a byte. However, serial data communication is not a simg
case of simply sending bytes from one location to another. Examples of problems which arise are ‘How dc
the receiver know when the transmitter is transmitting, and how can the receiver know that the data it recei\
is the the correct data (i.e it is the same data the transmitter transmitted)?’

Receiver Transmitter

It may be best to imagine a typical scenario in a microprocessor system. We can imagine the line
communication between the transmitter and receiver being quiet, i.e. having a logic level of 0.

Receiver Transmitter

0 1 0 0 1 0 1 1

If a data sequence as the one above, 01001011, is sent by the transmitter, there is an immediate prob
Because the data line is originally at logic level ‘0", when the first bit, a zero, appears at the receiver, tt
receiver doesn’t know that it is there and only starts picking up data when the second bit, a ‘1’ arrive
Therefore we need to be able to tell the receiver that data is about to arrive. We achieve this using a ‘s
bit’, which, because the line is logically at zero when it is quiet, must be therefore a ‘1’. Now the data can t
received correctly.

Receiver Transmitter

However, as you can see from the above diagram, the data sequence ends with a ‘1’. Because the start |
also a ‘1’, we want the intervening period between data transmissions to be at logic level ‘0’. In order t
ensure that this happens, we include a ‘stop bit’” at the end of the data transmission, which is, of course
logic level ‘0’. The data packet as it stands now is presented below.

Receiver Transmitter

118

A simple error checking device, which is used by the Lego RCX, is called parity checking, which involve:
adding another bit to the packet. We pick a level of parity, either even or odd. Even parity simply means tr
we want an even number of ‘1’s in our data sequence (including the parity bit, but not the start bit). Odd par
means we want an odd number of ‘1’s in the packet. The RCX uses odd parity, so it is used in this examg
As the packet stands, and ignoring the start and stop bits, there are currently four bits at logic level ‘1'. V
need an odd number of ‘1’ bits, so the parity bit, inserted between the eight data bits and the stop bit, is
logic level ‘1’. Thus there are now five bits at logic level ‘1’, ensuring odd parity.

Receiver Transmitter

1 0 1 0 0 1 0 1 1 1 0

Having examined how the message packets are formed, we can now examine how the data is transfe
between the infra-red tower and the RCX.

The message is passed between the computer we are working on down via the serial cable to the infra
tower. Inside the tower is a Light Emitting Diode, abbreviated to LED. An LED is a small piece of circuitry
which lights up when an electric current passes through it, and is dark otherwise. Thus, when the bit patt
is passed to the LED, it flashes on and off in harmony with the bit pattern. Because, as discussed eatrlier,
stop bit is a ‘0’, the LED is usually turned off when no data is being transmitted.

~.
\V
~ i . .
o Although here it is mentioned that an LED flashes in harm ny
Z with the bit patterns it receives, the Lego RCX and he
Communications tower use infra-red light signals, which are
invisible to the human eye. The green LED which lights on the
front of the tower is simply to indicate that transmission is

taking place.

119

Because the transmission of the data is via a light signal, other sources of light can interfere with it. Becat
of this, the transmission of the signal is not always received at the other end. In order to make up for th
both the RCX and the infra-red tower continually send the same message until the other replies that it
received the message.

At the most basic operating level of the RCX, or of any electronic device, very simple and straightforwar
instructions are carried out. An example in assembly language, which is a very low level language, would k

MOV AX, 7
ADD AX, 3

The MOV AX, 7 instruction copies the value 7 into the register called AX.

The ADD AX, 3 instruction adds 3 to whatever is in the AX register.

Don’t worry if you don’t understand this. The important this is to note that the instructions are very short an
actually do very little (assembly language programs are typically very long).

Each instruction is made up of an opcode (e.g. MOV, ADD), and one or more operands (such as AX, 7, ¢
Thus the opcode is the actual instruction to the computer as to what to do, and the operands are the piect
data which are used in the action.

With this knowledge, we can know examine how the data is transmitted between the RCX and the comput
At the packet level, all packets look like this:

0x55 Oxff 0x00 D1 ~D1 D2 ~D2 ... Dn ~Dn C ~C

The first three bytes are 55, FF and 00 (in hex representation, as indicated by the leading ‘0x’).
These three bytes form the beginning of every packet sent. If we examine the bit sequence which these
represent,

010101011111111100000000

we may notice that there are an even number of ‘1’'s and ‘0’s. This start to the packet, called the ‘heade
notifies the receiver that data is about to follow.

The data for the actual message then follows. In the case where there are both an opcode and one or 1
operands, the opcode always comes first.

Note that for every bytBn, there is a correspondirgPn. This may be confusing at first, but what it means

is that every byte that is transmitted is followed by its complement i.e. the bits of the data byte are ¢
reversed, for example 00110101 complemented becomes 11001010.

The C value is a checksum value and theis its complement. A checksum value is basically the addition
of all of the data byte values, without any carry.

An example may help to clear all of this up, as follows.

120

The data necessary to send an infra-red message is F7 followed by the 8 bit message. For example:
55 FF 00 F7 08 12 ED 09 F6
is a packet sending the message 0x12 to the RCX.

The header for the packet is, of course, 55 FF 00. The next byte must be F7 to specify that a message
be communicated. This byte, F7, is now complemented (bits reversed) to form 08, i.e.:

1111 0111 has now become
0000 1000

The next byte is 12, which is the actual byte this message wishes to send. Its complement is ED.

Finally, the checksum and its complemented are calculated. This is performed thus:

F7
+ 12
109

However the final carry is not taken into account, so the checksum remains as 09, with complement F6.

Now let’'s examine the following sequence of message transfers.

Data Checksum attained as a result of
Source Message adding these values

PC 55 FF 00 18 E7 18 E7 18

RCX 55 FF 00 E7 18 E7 18 E7

PC 55 FF 00 E9 16 47 B8 30 CF E9 47

RCX 55 FF 00 16 E9 16 E9 16

If we follow the sequence of events, the PC first sends the message ‘18’ to the RCX. 18 is the opcode wh
asks the RCX ‘Are you alive?’ i.e. it attempts to discover if the RCX is switched on. The RCX is switchec
on, and so it responds with E7 — which indicates that it is alive. Note that the reply, E7 is the complement
18. All of the opcodes have their complement as their reply.
The next instruction is a little more complicated.
The opcode is E9, which is the opcode for ‘Set motor direction’. This opcode requires an operand in order
determine what motors to operate on, and what to do with them.
The operand specified here is 47, which specifies the RCX to switch all three motors, A, B and C to tt
opposite direction of that which they are currently travelling in.
The value of the operand is determined by the following table.

121

Bit Description

0x01 Modify direction of motor A

0x02 Modify direction of motor B

0x04 Modify direction of motor C

0x40 Flip the directions of the specified motors

0x80 Set the directions of the specified motors to forward

In order to specify more than one motor, as in our above program, we add together the required values
our case we added

+ 40
47

Thus, 47 was the required operand value.

The reply, 16, returned to the computer from the RCX, indicates that the operation was a success. Note a(
how the reply, 16, is the complement of the original opcode, 89.

Earlier it was mentioned that the header to the packet, 55 FF 00, has an equal number of ‘0’ and ‘1’ bits.
fact, because each message byte which is sent is followed by its complement, every data transmission
contain an equal number of 1's and 0’s. When the data is received, it can compensate for a constant sig
bias (caused by ambient light) simply by subtracting the average signal value. In other words, the recei
can make an attempt at eliminating the interference caused by light signals other than the infra-red signa

122

Appendix B

Downloading programs to the RCX with error checking

When a program is downloaded to the RCX thewnloadDone event reports on the results of the
operation.

- If the program is downloaded to the RCX with no errorditrerCode equals one.

- If an error does occur tharorCode value is zero.

The code below could be entered in a project file and this file could then be placed in the
VB\Template\Projects which would mean that it would be available every time you wanted to create a ne
downloadable program.

The form could look like Figure B.1.

Download

Figure B.1

G e [o le form.

"All Variables MUST be Declared
Option Explicit

Dim bInWait As Boolean

Dim blnDownloadOK As Boolean

Private Sub crndDownload_Click()

bInWait = True
" Enter code to download to RCX here
End Sub

Private Sub cmdExit_Click()
PBrickCtrl.CloseComm
End

End Sub

Private Sub Form_Load()
PBrickCtrl.InitComm

bInWait = False
bInDownloadOK = False
End Sub

123

Private Sub PBrictCtrl_AsyncronBrickError(ByVal Number As Integer, Description As String)
If (bInWait) Then
While (bInWait)
DoEvents
Wend
MsgBox "Asynchronous Brick Error: " + Str(Number) + " " + Description, vbCritical, _
"Download Failed"
Else
MsgBox "Asynchronous Brick Error: " + Str(Number) + " " + Description, vbCritical, _
"Download Failed"
End If
End Sub

Private Sub PBrictCtrl_DownloadDone(ByVal ErrorCode As Integer, ByVal DownloadNo As _
Integer)
If ErrorCode = O Then
bInDownloadOK = True
‘MsgBox "Download Done and OK"

Else
'‘MsgBox "Download Failed"
End If
bInWait = False
End Sub

Private Sub PBrictCtrl_downloadStatus(ByVal timelnMS As Long, ByVal sizelnBytes As _
Long, ByVal taskNo As Integer)
If (bInWait) Then
While (bInWait)
DoEvents
Wend
If (biInDownloadOK) Then
OutputStats timelnMS, sizelnBytes, taskNo
bInDownloadOK = False

End If
Else
If (bInDownloadOK) Then
OutputStats timelnMS, sizelnBytes, taskNo
bInDownloadOK = False
End If
End If
End Sub

124

' Present Program Stats in a Message Box

Public Sub OutputStats(Time As String, Size As String, Task As String)
Dim LFCR As String
LFCR = Chr(13) + Chr(10)

MsgBox "Time: " + Time + LFCR + "Size: " + Size + LFCR + _
"Task Number: " + Task, vblnformation, "Download Successful"
End Sub

How the Code works

The purpose of all this code is

- Not to do anything while thBownloadDone event procedure is being executed.

- To only show program statistics if the program is downloaded successfully.

If the ActiveX control sends any events and forces any dialogs to be opened, all other events sent from
ActiveX control to the Visual Basic application will disappear.

Say for example a message box statement appearedow@oadDone event procedure, and one also
appeared within thAsyncronBrickError event procedure. If an error occurred in the program download,
the message box placed on the screen biptvenloadDone procedure would disappear and the message
box in theAsyncronBrickError would be opened.

The code above does not allow theyncronBrickError or downloadStatus procedures to do anything
while the code in thddownloadDone procedure is being executed (whemWait = True), and the
downloadStatus procedure will only output its statistics to the screen if the download has been successfi
(bInDownloadOK = True).

125

Appendix C

Setting up Visual Basic to program the Lego RCX

To program in Visual Basic the SPIRIT.OCX Active-X control must have been first installed on the computel
This happens automatically when the Lego Mindstorms software is installed on the system.

Setup

>

Begin by starting up Visual Basic and then create a STANDARD.exe project. To install the
SPIRIT.OCX in Visual Basic, sele€@omponentérom theProjectmenu.

Project Format Debug Runm 1

1] Add Form

3 add MDI Farm

2% Add Module

32 Add Class Module
& Add User Control
1] Add Propetty Page

Add Activer Designer 3

addFie.. CoHD Figure C.1

Remove Forml

B8 References... Select Components from

Components. ..

the Project menu.

Projectl Properties..,

>

Components

Controls lDesigners] Insertable Objects]

In theControlstab, tickLEGO PBrickControl, OLE Control modyland then click on the OK button.
The LEGO logo should appear in theol Box If it does not appear there, use fud Components
feature and use the browser to find it.

2l

IE Super Label d

IE Tirmer

Kodak Image Admin Control

Kodak Image Edit Control

Kodak Image Scan Control

Kodak Image Thumbnail Control
e

Macromedia Shockwave Director Control
Marguee Control Library
MCIwndy Control

Mediaview 1,41 Japanese OLE Control H
MicroHelp Gauge Control - Browse... Flg ure C . 2

D [™ Selected Items Only

LEGO PBrickContral, OLE Control module

Find the Lego ActiveX
control in the list of

Location: CPROGRA~~1ILEGOMI~11SYSTEM|SPIRIT. OCK

ok | concel aprly | components.

126

Click on the LEGO control in th&ol Boxand draw an instance of it on the main form.

[x]

General w, Form1 (_ O]

& ~ Figure C.3

=

-~ Laee0 Draw an instance of the
i

Lego control onto your form.

By selecting the object, a number of properties for the SPIRIT.OCX can be set. The name Lego recomme
you use for the object is PBrickCtrl and this name is used throughout this course (but you can use whate
name you wish).

> Click on the(Name)property in the left cell and type the té&@rickCtrl .

All the other properties are self explanatory, and their defaults are for working with the RCX.
Because all the SPIRIT.OCX methods use numbers to control their behaviour, it is easier to understa
programs if you use constants.

> ChooseAdd Modulefrom theProjectmenu.

> Click on theExistingtab, and locate the RCXdata.bas file that you should have downloaded with this
file.

> When found, select it and click on t@genbutton.

The Projectwindow should now look like Figure C.4 (if you have folders in y@rgjectwindow, click on
the Foldericon to remove the folders from view.

Project - Project]
= &

Figure C.4

- B Project1 {Project1)
[m®Formi (Formi)
&2 Modulel (RCxdata.bas)

The Project window.

In the above figure Modulel is selected (i.e. highlighted).

> SelectForm1lin the Projectwindow.

> SelectSave Form1 Afom theFile menu.

> Locate the C:\Program Files\DevStudio\VB\Template\Projects directory.

127

Save File As EH

Save jn: | 4 Projects
E#] Desktop
&3 Form1 ﬁj My Documents
=) My Computer
J 3% Floppy [&:]
=)
__| Program Files
| DevStudio
_1v¥b
__| Template

jECts:

=

File name|

Save

[S |
b

— (D]
= [E]

. . Cancel
__| wisula basic

Save az ||

Help

Figure C.5

Locate the Projects
directory of Visual Basic

> Call the formLego and then click on th8avebutton.

Save File As

Save jn: | 4 Projects

File name: |Lego
Save as type: [Fom Files [*.fim) =] Cancel
Help

Click on theSavebutton.

Click on theSavebutton.

YV V V V V VYV V

Start Visual Basic again.
The following dialog box should appear.

HE

Mew Project

|CLOSOft -~
isual Basic
Hew lExisting]Hecent]

P 2 2> B &

Ackive EXE Activelx DLL Ackives WE Application

Contral Wizard
B B e D e
WE Enterprise Addin Activel

Ackives Leqo
Edition Co... Document DLL Document EXE

Figure C.6

Save your project as Lego.

From theFile menu selecbave Project Aand in the file name box tygesgo.

Click to select Modulel(RCXdata.bas) in fmjectwindow.
From theFile menu selecBave Modulel Asind enter the name RE Xdata.

Select theexit command from thé&ile menu to exit Visual Basic.

Figure C.7
Cancel
Hel
e | The New Project dialog box should now
Bl Cetcer i et e contain a template for Lego projects.
> If no dialog box appears, selédew Projectfrom theFile menu.

You now can use this icon (Lego) to start all your Lego projects.

128

Appendix D
TheRCXdata.bas file

" Project: MindStorms
" Unit : Global module
"Rev.: 1.2

Public Const SLOT _
Public Const SLOT_2
Public Const SLOT_3
Public Const SLOT_4

Public Const SLOT __

=
(I I T I 1|
A WNPEFLO

o1

Public Const MAIN =0

Public Const TASK_ONE =1
Public Const TASK_TWO =2
Public Const TASK_THREE = 3
Public Const TASK_FOUR =4
Public Const TASK_FIVE =5
Public Const TASK_SIX =6
Public Const TASK_SEVEN =7
Public Const TASK_EIGHT =8
Public Const TASK_NINE =9

Public Const CLICK_SOUND =0

Public Const BEEP_SOUND =1

Public Const SWEEP_DOWN_SOUND = 2
Public Const SWEEP_UP_SOUND = 3
Public Const ERROR_SOUND =4

Public Const SWEEP_FAST _SOUND =5

Public Const VAR =0
Public Const TIMER =1
Public Const CON =2

129

Public Const MOTSTA =3
Public Const RAN = 4

Public Const TACC =5
Public Const TACS =6
Public Const MOTCUR =7
Public Const KEYS = 8
Public Const SENVAL =9
Public Const SENTYPE = 10
Public Const SENMODE = 11
Public Const SENRAW = 12
Public Const BOOL =13
Public Const WATCH = 14
Public Const PBMESS = 15

Public Const SENSOR_1 =0
Public Const SENSOR 2 =1
Public Const SENSOR_3 =2

Public Const TIMER _
Public Const TIMER_2
Public Const TIMER_3
Public Const TIMER_4

=

L | I T
wWNPF O

Public Const LEFT_TACHO =0
Public Const RIGHT_TACHO =1

Public Const SHORT_RANGE =0
Public Const LONG_RANGE =1

Public Const NO_TYPE =0
Public Const SWITCH _TYPE =1
Public Const TEMP_TYPE =2
Public Const LIGHT _TYPE =3
Public Const ANGLE_TYPE =4

Public Const RAW_MODE =0
Public Const BOOL_MODE =1

Public Const TRANS_COUNT_MODE = 2
Public Const PERIOD_COUNT_MODE =3
Public Const PERCENT_MODE =4

Public Const CELSIUS_MODE =5

130

Public Const FAHRENHEIT_MODE = 6

Public Const ANGLE_MODE =7

Public Const MOTOR_A ="0"
Public Const MOTOR_B ="1"
Public Const MOTOR_C ="2"

Public Const OUTPUT_A =0
Public Const OUTPUT B=1
Public Const OUTPUT_C =2

Public Const GT =0
Public Const LT =1
Public Const EQ =2
Public Const NE = 3

Public Const MS_10=1

Public Const MS_20 = (2 * MS_10)
Public Const MS_30 = (3 * MS_10)
Public Const MS_40 = (4 * MS_10)
Public Const MS_50 = (5 * MS_10)
Public Const MS_60 = (6 * MS_10)
Public Const MS_70 = (7 * MS_10)
Public Const MS_80 = (8 * MS_10)
Public Const MS_90 = (9 * MS_10)
Public Const MS_100 = (10 * MS_10)
Public Const MS_200 = (20 * MS_10)
Public Const MS_300 = (30 * MS_10)
Public Const MS_400 = (40 * MS_10)
Public Const MS_500 = (50 * MS_10)
Public Const MS_700 = (70 * MS_10)
Public Const SEC_1 = (100 * MS_10)
Public Const SEC_2 = (2 * SEC_1)
Public Const SEC_3 = (3 * SEC_1)
Public Const SEC_5 = (5* SEC_1)
Public Const SEC_10 = (10 * SEC_1)
Public Const SEC_15 = (15 * SEC_1)
Public Const SEC_20 = (20 * SEC_1)
Public Const SEC_30 = (30 * SEC_1)
Public Const MIN_1 = (60 * SEC_1)

131

Appendix E

Polling Motors

Polling a motor to discover information about it is different to any of the other options (e.g. polling a sensor
This is because the information is packed. This means that to get a meaning for the information the intes
returned must be changed into a binary number (8 bits in this case).

Control Type Property Value
Form Name frmMotorPoll

Caption Polling Motors
CommandButton Name cmdPoll

Caption &Poll
CommandButton Name cmdExit

Caption E&xit
Text Box Name txtDec

Text (Leave Blank)
Text Box Name txtBin

Text (Leave Blank)
Text Box Name txtOnOff

Text (Leave Blank)
Text Box Name txtBrake

Text (Leave Blank)
Text Box Name txtOutput

Text (Leave Blank)
Text Box Name txtDirection

Text (Leave Blank)
Text Box Name txtPower

Text (Leave Blank)

Table E.1

132

The following code shows you how to use the integer returned foriPotlhenethod.

"All Variables MUST de Declared
Option Explicit

Private Sub cmdExit_Click()
PBrickCtrl.CloseComm
End

End Sub

Private Sub cmdPoll_Click()
Dim strStatus As String
Dim iMotor As Integer
Dim bMotor As String

iMotor = PBrickCtrl.Poll(MOTSTA, 0)
txtDec = Str(iMotor)

bMotor = Bin(iMotor)
txtBin = bMotor

'Find Power Level
strStatus = Mid(bMotor, 6, 3)
txtPower = Str(BintoDec(strStatus))

' Find Direction
If Val(Mid(bMotor, 5, 1)) = 1 Then
txtDirection = "Forward"
Else
txtDirection = "Reverse"
End If

" Find Output Number
strStatus = Mid(bMotor, 3, 2)
txtOutput = Str(BintoDec(strStatus))

' Brake / Float

If Val(Mid(bMotor, 2, 1)) = 1 Then
txtBrake = "Brake"

Else
txtBrake = "Float"

End If

"ON / OFF
If Val(Mid(bMotor, 1, 1)) =1 Then
txtOnOff = "ON"
Else
txtOnOff = "OFF"
End If
End Sub

" integer value
' binary value

'‘Binary Value

' get bits 0-2
" dec value

'get bit 3
if =1 =>Fwd

if =0 => Rev

' get bits 4-5
" dec value

'get bit 6
'if =1 => Brake

'if = 0 => Float

'get bit 7
if =1=>0n

“if =0 => Off

133

Private Sub Form_Load()
PBrickCtrl.InitComm
End Sub

Public Function Bin(Number As Integer) As String
Dim strBit As String
Dim iPos As Integer
Dim iNumber As Integer

iNumber = Number
For iPos = 7 To O Step -1
If iNumber >= (2 ~ iPos) Then
strBit = strBit + "1"
iNumber = iNumber - (2 © iPos)
Else
strBit = strBit + "0"
End If
Next

Bin = strBit ' return result
End Function

Public Function BintoDec(Number As String)
Dim iLength As Integer
Dim bNumber As String
Dim iDec As Integer
Dim iPos As Integer

iDec =0

bNumber = Number
iLength = Len(bNumber)

For iPos = iLength To 1 Step -1
If Mid(bNumber, 1, 1) ="1" Then
iDec = iDec + (2 ~ (iLength - 1))
End If
bNumber = Mid(bNumber, 2, iLength)
iLength = iLength - 1
Next

BintoDec = iDec
End Function

134

How the Motor Poll program works

Each time thd’oll button is clicked an integer is returned containing information about the motors, but this
information is packed. It is therefore necessary to convert the integer value to a binary string.

bMotor = Bin(iMotor) '‘Binary Value

For example if the integer 79 was passed intoBhefunction, the string "0100111" would be returned.
This is the binary representation of the decimal number 79.

You now have the information in the form you want.

71 6 |5 4 3 2 1 0

On /[Brake| Output| Direction

Off |/ Floaf Numbelcw/ cow - oVver Leve

Off | Brake[Output Q/Clockwisq Power =7

To find the Power Level of the motor:
strStatus = Mid(bMotor, 6, 3) ' get bits 0-2
txtPower = Str(BintoDec(strStatus)) ' dec value

The functionMid returns a specified number of characters from a string.

e.g.Mid("Lego Mindstorms", 6, 4) would return the string "Mind"

strStatus = Mid(bMotor, 6, 3) ' get bits 0-2

This statement would return the three characters in the binary string starting at a character six. For a bin
number, this would be bits 2, 1, and 0. This value tells you the power level of the selected motor in bina
form. To get the decimal value the function BinToDec is used:

txtPower = Str(BintoDec(strStatus)) ' dec value
This function takes a binary string and returns an integer value. The Text Box txtPower is then set to tt
integer value.

Example:
If the value returned from the Poll method was 79, and we wish to extract the last three bits to find the pow
level, the following sequence of events occurs:

79 - "01001111" - "111" - 7

Integer - Binary - Specified Bits — Integer

135

To find the motor direction:
If Val(Mid(bMotor, 5, 1)) = 1 Then 'get bit 3
txtDirection = "Forward" 'if =1 => Fwd
Else
txtDirection = "Reverse" 'if = 0 => Rev
End If
To find the motor direction, we need to extract character five (bit three) from the string, and if this is equi
to 1, the motor has been set for clockwise rotation and if it is equal to O, the motor is set for anti-clockwis

136

Appendix F
Programming the Lego RCX with other languages

Visual C++ Programming

To program in Visual C++ the SPIRIT.OCX Active-X control must have been first installed on the computer
This happens automatically when the Lego Mindstorms software is installed on the system.

Setup

> Begin by starting up Visual C++ and then click on FileNew. ChooseMFC AppWizard (exeand
name the project.

Y 1

Fles Puec | wokipeoes | Ofes Docuents |

[ATL COM Apcawiresd B 3T Ste Lkesy Pt e
[st oo Appiwfirsad Lgediwwm:

Dunbiss Project
T J

Chatka Werned lar duws

oy, Chaee'3 e 2ol in ‘iz CIFATERSH FALES\DEVS

dwva Propct F Cmstn e sotpars
skl &=
Pt Cormafaiman iT

NI farwasn — Figure F.1
s e Dabae Wwignd

| ' A st
] wicle oo il o

] Dy Ly s Choose MFC AppWizard (exe)
Lo] e when presented with these choices.

> Click on the OK button, and make the applicatidialog based. Proceed on through the Wizard
ensuring that the ActiveX Control option is ticked.

> Go to theProjectmenu and seleé&dd To Project] Components and Controls
P G Tom Widow How Figure F.2
L » | [—
[
3’--?-“; M) e Adding components and
o et —— controls in Visual C++.

> SelectRegistered ActiveX Contrglihen select the Spirit Control and clicklosert Click OK in the
following dialogs and then close tB®mponents and Controls Gallery

Before adding the Spirit control to the main dialog box, you must first load the dialog box resource into th

dialog editor.

> Open theResourceVievn the project workspace. Open th&log box resource folder and double-
click theIDD_LEGODEMO_DIALOG icon. This opens the dialog box resource inside the Developer
Studio dialog editor.

> To add a Spirit control, drag and drop the Spirit control, which has now been added to the contr
palette, to the dialog box resource.

137

Initialising the Spirit Control
Before adding the source code used to initialise the Spirit control, you must first add member variables to 1
CLegoDemoDlg class associated with the Spirit control.
> UsingClassWizardfound in theViewmenu), click on th€ontrol ID for the Spirit control. Click on
the Add Variablebutton, and add the values below.

K1
Muzage Mz ManbarYsiabdar | dutoration | AckesEvantr | Dz o |
Fuoesii Dlais g Sedd Oz =
= B R s = [|
£ ML egoD enoilsgoDensalig e [_\Lagabrsolbl coo
Corad D T

DCAHLEL :-'\-b-e' A L 73 I
\DOF T
Carod

e _ Figure F.3

Dt aphion:

b Adding the member variables
W s T wewnded .
of the Spirit Control.

Because all of the SPIRIT.OCX methods use (constant) numbers to control the behaviour, it would be go

programming practice to give these constants meaningful names and place them in a header file. The glc

constants make the programs more readable in general and the project specific constant definitions make

program understandable in terms of the problem it tries to solve (the robot it tries to control). To add the

constants to the project:

> Click onFile 0O New

> SelectC/C++ Header Fileand call the fileRCXdata.

> Go to theFile tab in theWorkspacevindow and expand thdeader Filesfolder, the RCXdata.h file
should now be there.

4 Srusoe Fley
&3 Legolivm 0pd
2 Lyl
1 LegpDermnlig cod)
2 oo Figure F.4
ot
ﬁl. el -
Bhooss The RCXdata.h header file
e .'_inJl- must be added to the project.

> Double click on this file and copy the code in Appendix D into the RCXdata.h file.

> A reference to this header file then needs to be inserted into every source file that uses the consta
In this program’s case the LegoDemoDLG.cpp file. At the top of the file, underneath the
#include "LegoDemoDlg.h" statement place the following statement:

#include "RCXdata.h"

138

Programming in Visual C++

Now that the control has been initialised, a program can be coded. To do this:

> Open the main dialog ba©D_LEGODEMO_DIALOG in the Resource Viewand place a button in
the dialog box as shown. Right-click on the button and set the properties as shown.

Figure F.5

HY bnes | suln | Demeded i |

5| | L] A T =] G [t
tgte gt [gtn Jden] | Suee Toes e Setting the properties of

g FH [t S

the new button.

The easiest way to set or retrieve the value of a control is to associate it with a class-member variable us
ClassWizard The CButtonclass will be used to represent the button control.
To add a member variable to a CDialog-derived class, follow these steps:

> OpenClassWizard
> Select the tab labelddember Variables
> Select the class name CLegoDemoDIg.
> Select the contrdD IDC_DOWNLOAD.
> Press the button labelédld Variable An Add Member Variabléialog box appears.
> Enter the control's name, category, and variable type, and then press OK.
> CloseClassWizard
2 =]
Worsage o b it | dsowin | ackvsEvect | D W |
= —
[Figure F.6

The Visual C++ ClassWizard.

Although the button is part of the dialog box resource and appears whenever the dialog box is displayt
nothing will happen when the button is used because no button events are handled by the dialog box cla

139

To add a button event f6DC_DOWNLOAD, follow these steps:

OpenClassWizard

Select the tab labelddessage Maps

SelectCButtonDlgas the class name.

SelectiDC_DOWNLOAD as the object ID.

SelectBN_CLICKED from theMessageéist box.

Press the button labelédld Functionand accept the default name for the member function.
CloseClassWizard

The Classview should now have thenDownload() member function.

YV V VYV V VY

I - |
B = rrere——
+ "3 Cobolly
¥ 8 Clegod snddon
- "3 Clegelerally
W CLasgolusrsolbgi T nd * pPe
iy [0 o b ToustnE o
i Ol ceiceet|

Ty DridtDiskool)
Wiy DrPanifl

Wiy Dl conl] H
1'.0.\5,,'::”{'0«-;1\.@;u1m| F|gure F?
v_binLasd
T w_hboon
¥_pheckoid
+ ™ Chord

] ok The Class view, where you should

1] | | .
10x [7e Jaire 20] | now see your new member function.

> Double click on this function to bring up the coding window, then insert the following code:

void CLegoDemoDlg::OnDownload()
{
m_pbrickctrl.InitComm(); //Initialises the Serial communication port.
m_pbrickctrl.SelectPrgm(0);
m_pbrickctrl.BeginOfTask(0);
m_pbrickctrl.Wait(CON,50); // Wait 0.5 sec.
m_pbrickctrl.SetPower("02",CON, 7);
m_pbrickctrl.SetFwd("02");// Set Motor O & 2 to Forward Direction

m_pbrickctrl.On("02"); // Start Motors O & 2
m_pbrickctrl.Wait(CON,200); // Wait 2 sec.
m_pbrickctrl.Off("02"); // Stop motors

m_pbrickctrl.PlaySystemSound(SWEEP_FAST_SOUND);
m_pbrickctrl.EndOfTask();

}

Ensure that the RCX is switched on and that the tower is connected to the computer. Run the Visual C
program by choosinBuild [Execute LegoDemo.ek®m the menu. Click on thBownloadbutton which
downloads the above program to the RCX. The program is now stored in the RCX and ready to run.

Figure F.8

— Once you are finished, start and
download your program to the RCX.

140

Programming with Microsoft Access

Introduction
If you haven't got access to any of Microsoft’'s Visual Studio products, you may want to try programming
using some common software products. One product that fits this description is Microsoft Access '97.

Setup

> Begin by setting up a blank Access database.

> Select thd=ormstab and click on th&lewbutton choosindesignview to bring you into the design
view for the form.

> From thelnsertmenu chooséctiveX Contral

> Select the Spirit Control and click on OK.
> The Lego logo should now appear on the form. Right click on the logo and dhopsstiesfrom
the drop down menu. Name the conttirickControl .
> Draw a button on the form and when the wizard appears, clzrs=el
> Right-click on the new button and and cho8seld Event then choos€ode Buildey followed by
OK.
> Insert the following code at the cursor:

PBrickCtrl.InitComm 'Initialises the PC-Serial communication port.
PBrickCtrl.SelectPrgm O

PBrickCtrl.BeginOfTask O

PBrickCtrl.Wait 2, 50 'Wait 0.5 sec.
PBrickCtrl.SetPower "motorOmotor2", 2, 7

PBrickCtrl.SetFwd "motorOmotor2"

PBrickCtrl.On "motorOmotor2" '‘Drive forward
PBrickCtrl.Wait 2, 200 '‘Wait 2 sec.
PBrickCtrl.Off "motorOmotor2" 'Stop motor

PBrickCtrl.PlaySystemSound 5 'Play buildin sound
PBrickCtrl.EndOfTask

> Save the form and then open it.
> Ensure that the tower is attached and the RCX is switched on. Click on the button to download tt
program to the RCX. Click on tHeunbutton on the RCX and watch the program run.

Figure F.9

Your program runs within a
form in Microsoft Access.

[QT I | I TN [P

141

Appendix G
The Lego RCX Memory Map

A memory map of the RCX’s memory can be obtained usind/lidirenMap method
> Create a new program

> Call the progranMemMap

> Build the program according to table G.1

Control Type Property Value

Form Name frmMemMap
Caption Memory Map

Command Button Name cmdMemMap
Caption &Memory Map

Text Box Name txtMemMap
Text (Leave Blank)
Multiline True

Table G.1

The program ‘Memory Map'.

Enter the following code:

Private Sub cmdMemMap_Click()
Dim Stat As Variant 'Store Array
Dim i, j As Integer 'Counters
Dim Element
Dim LFCR As String 'Next Line

LFCR = Chr(13) + Chr(10)
Pointer = O '1st Element

Stat = PBrickCtrl.MemMap 'Download memory map
If IsArray(Stat) Then
"Error Code - Element O

txtMemMap = "Error Code: " + Str(Stat(Element)) + LFCR
Element = Element + 1

142

'‘Subroutine Pointers - Elements 1 to 40
txtMemMap = txtMemMap + "Subroutine Pointers" + LFCR
Forj=0To 4
txtMemMap = txtMemMap + "Program " + Str(j) + " "
For i = Element To Element + 7
txtMemMap = txtMemMap + " " + Str(Stat(i))
Next i
Element = Element + 8
txtMemMap = txtMemMap + Chr(13) + Chr(10)
Next j

' Task Pointers - Elements 41 to 90
txtMemMap = txtMemMap + "Task Pointers" + LFCR
Forj=0To 4
txtMemMap = Chr(13) + Chr(10) + txtMemMap + "Program " + Str(j) + " "
For i = Element To Element + 9
txtMemMap = txtMemMap + " " + Str(Stat(i))
Next i
Element = Element + 10
txtMemMap = txtMemMap + Chr(13) + Chr(10)
Next j

"Elements 91 - 94
txtMemMap = txtMemMap + LFCR + "Pointer to Start of Datalog Area: " + _
Str(Stat(Element))
Element = Element + 1
txtMemMap = txtMemMap + LFCR + "Pointer to Last Element in Datalog Area: " + _
Str(Stat(Element))
Element = Element + 1
txtMemMap = txtMemMap + LFCR + "Pointer to End of Datalog Area: " + _
Str(Stat(Element))
Element = Element + 1
txtMemMap = txtMemMap + LFCR + "Pointer to Last byte in User Memory: " + _
Str(Stat(Element))
Else
MsgBox "Not a valid array"
End If

End Sub

143

An array of 95 elements is returned by the MemMap method.

Element Meaning

0 Error Code (0x00 indicated an error)

01-08 Program O - Subroutines 0 - 7

09-16 Program 1 - Subroutines 0 - 7

17-24 Program 2 - Subroutines O - 7

25-32 Program 3 - Subroutines 0 - 7

33-40 Program 4 - Subroutines 0 - 7

41-50 Program O, - Tasks 0 - 9

51-60 Program 1 - Tasks 0 -9

61-70 Program 2 - Tasks 0 -9

71-80 Program 3 - Tasks 0 -9

81-90 Program 4 - Tasks 0 -9

91 Pointer to the start of the datalog area

92 Pointer to the last element currently logged
93 Total of mem used (incl. allocated datalog area)
94 Pointer to the last available byte in user ram

The size of any element can be calculated as: (Ptr to next element) — (Ptr to this element).
E.g. Size of Task O in Program 1
Size = Element 52 - Element 51

144

Appendix H
Downloading Firmware

The firmware file must be downloaded to the RCX before you can communicate with the RCX from you
PC. If the watch display is not displayed on the LCD screen of the RCX on startup and the View button
non functional, then the RCX contains no firmware. If you run the following procedure to obtain the ROV
version and in the returned string the last five character are 00.00, the RCX has no firmware.

“ Obtain ROM Version

Private Sub cmdRomVersion_Click()
IbIRom.Caption = PBrickCtrl.UnlockPBrick

End Sub

To do download the firmware you must first download the firmware:

‘ Download Firmware
Private Sub cmdDownloadFirmware_Click()
PBrickCtrl.DownloadFirmware "C:\Program Files\LEGO
MINDSTORMS\Firm\firm0309.Igo"
End Sub

‘Download Status
Private Sub PBrickCtrl_DownloadDone(ByVal ErrorCode As Integer, ByVal DownloadNo As Integer)
If ErrorCode = O Then
MsgBox "Firmware Successfully Downloaded", vbinformation
Else
MsgBox "Firmware Download Failed", vbCritical
End If
End Sub

The download will take a few minutes and then when it is done a message box will then appear on the scre
Now the firmware must be unlocked. To unlock the firmware execute the following procedure

Unlock Firmware
Private Sub cmdUnlockFirmware_Click()

IbIFirmware.Caption = PBrickCtrl.UnlockFirmware("Do you byte, when | knock?")
End Sub

The label IblIFirmware should now contain the text:

“This is a LEGO Control OCX communicating with a LEGO PBrick!”
If the command fails the label will contain the text:

“Unlock failed”

The RCX is now ready to receive downloaded programs.

145

	LEGO Mindstorms Programming with Visual Basic
	Contents
	Introduction
	1 First Steps in Visual Basic
	2 Introducing the Lego Mindstorms Kit
	3 Your First Robot
	4 Using Sensors
	5 Manipulating Variables
	6 Building Autonomous Robots
	7 A More Controllable Robot
	8 Delving Deeper into the RCX
	9 Networking and Synchronisation
	A Serial Communications
	B Downloading
	C Setting up Visual Basic
	D RCXdata.bas
	E Polling Motors
	F Other Languages
	G RCX Memory Map
	H Downloading Firmware

