


Advanced NXT
The Da Vinci Inventions Book

■ ■ ■

Matthias Paul Scholz



Advanced NXT: The Da Vinci Inventions Book

Copyright © 2007 by Matthias Paul Scholz

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval 
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-843-6

ISBN-10 (pbk): 1-59059-843-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence 
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark 
owner, with no intention of infringement of the trademark.

LEGO® and MINDSTORMS® are trademarks or registered trademarks of the LEGO Group in the United 
States and other countries. Apress, Inc., is not affiliated with the LEGO Group, and this book was written 
without endorsement from the LEGO Group.

Lead Editors: Matthew Moodie, Jim Sumser
Technical Reviewer: Jim Kelly
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore, 

Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, 
Dominic Shakeshaft, Jim Sumser, Matt Wade, Tom Welsh 

Project Manager: Kylie Johnston
Copy Edit Manager: Nicole Flores
Copy Editor: Jennifer Whipple
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor: Susan Glinert Stevens
Proofreader: Lori Bring
Indexer: Carol Burbo
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, 
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or 
visit http://www.springeronline.com. 

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, 
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com. 

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution 
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to 
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly 
by the information contained in this work. 

The source code for this book is available to readers at http://www.apress.com in the Source Code/Download 
section.



To the memory of Stanislaw Lem (1921–2006)



v

Contents at a Glance

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

■CHAPTER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

■CHAPTER 2 A 3,000-Foot Look at NXT Programming Environments . . . . . . . . . 29

■CHAPTER 3 The Armored Car  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

■CHAPTER 4 The Catapult  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

■CHAPTER 5 The Revolving Bridge   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

■CHAPTER 6 The Aerial Screw  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

■CHAPTER 7 The Flying Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

■CHAPTER 8 Outlook: What NXT?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

■APPENDIX A Installation and Configuration of the Programming 
Environments Used in the Book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

■APPENDIX B Leonardo’s Letter of Application to the Duke of Milan . . . . . . . . . 357

■APPENDIX C Glossary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

■APPENDIX D Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

■INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365



vii

Contents

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

■CHAPTER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

An Invention-Driven Tour Through the Life of Leonardo da Vinci  . . . . . . . 2
Renaissance Man . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Five Designs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

The LEGO MINDSTORMS NXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

The NXT Community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

The MINDSTORMS Developer’s Program . . . . . . . . . . . . . . . . . . . . . . 25

LEGO.com MINDSTORMS Community NXT . . . . . . . . . . . . . . . . . . . . 25

MINDSTORMS Education NXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

The NXT STEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

nxtasy.org  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

mynxt.matthiaspaulscholz.eu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

■CHAPTER 2 A 3,000-Foot Look at NXT 
Programming Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

LEGO MINDSTORMS NXT Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

NXT-G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

IDE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Example Program Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

RobotC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

IDE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Example Program Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



viii ■CO N T E N T S  

NXC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

IDE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Example Program Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

pbLua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Example Program Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

leJOS NXJ  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Example Program Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

■CHAPTER 3 The Armored Car  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Historical Background  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Special Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Interpreting the Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Building the Gearing Mechanism  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Building the Armored Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Programming the Armored Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

LEGO MINDSTORMS NXT Software  . . . . . . . . . . . . . . . . . . . . . . . . . . 98

RobotC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

NXC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

pbLua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

leJOS NXJ  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

■CHAPTER 4 The Catapult  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Historical Background  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Hardware Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

The Double Leaf Spring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

The Crank Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Building the Catapult  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Programming the Catapult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

LEGO MINDSTORMS NXT Software  . . . . . . . . . . . . . . . . . . . . . . . . . 149

RobotC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

NXC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

pbLua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

LeJOS NXJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



■C ON TE N TS ix

■CHAPTER 5 The Revolving Bridge   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Historical Background  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Hardware Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Building the Revolving Bridge  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Programming the Revolving Bridge  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

LEGO MINDSTORMS NXT Software  . . . . . . . . . . . . . . . . . . . . . . . . . 211

RobotC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

NXC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

pbLua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

leJOS NXJ  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

■CHAPTER 6 The Aerial Screw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Historical Background  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Hardware Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Building the Aerial Screw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Programming the Aerial Screw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

LEGO MINDSTORMS NXT Software  . . . . . . . . . . . . . . . . . . . . . . . . . 262

RobotC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

NXC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

leJOS NXJ  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

pbLua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

■CHAPTER 7 The Flying Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Historical Background  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Hardware Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Building the Flying Machine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

The Wires That Lower the Wings  . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

The Wires That Lift the Wings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Building the Remote Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Programming the Flying Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

LEGO MINDSTORMS NXT Software  . . . . . . . . . . . . . . . . . . . . . . . . . 319

NXC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329



x ■CO N T E N T S  

■CHAPTER 8 Outlook: What NXT?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Enhancing the Five Robots  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

The Armored Car. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

The Catapult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

The Revolving Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

The Aerial Screw. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

The Flying Machine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Remotely Controlling the Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Making Other Inventions of Leonardo with LEGO  . . . . . . . . . . . . . . . . . . 334

The Theater Stage for Orpheus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

The Canal Excavation Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Recommended Web Sites  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Web Sites on Leonardo da Vinci . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Sites on LEGO MINDSTORMS NXT  . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Recommended Books  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

LEGO MINDSTORMS NXT: The Mayan Adventure . . . . . . . . . . . . . . 338

The LEGO MINDSTORMS NXT Idea Book . . . . . . . . . . . . . . . . . . . . . 339

Maximum LEGO NXT: Building Robots with Java Brains . . . . . . . . 339

Leonardo’s Machines: Da Vinci’s Inventions Revealed. . . . . . . . . . 339

■APPENDIX A Installation and Configuration of the Programming 
Environments Used in the Book  . . . . . . . . . . . . . . . . . . . . . . . . . 341

■APPENDIX B Leonardo’s Letter of Application 
to the Duke of Milan  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

■APPENDIX C Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

■APPENDIX D Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

■INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365



xi

About the Author

■MATTHIAS PAUL SCHOLZ has a degree in mathematics obtained at the University of Bayreuth, Germany, 
and works presently as a system engineer. He has held IT-related positions in various companies in 
Germany over the past 12 years, specializing in model-driven development and distributed environ-
ments. He has been an active member of the LEGO MINDSTORMS community since 2000. Scholz 
was one of the developers of the open source leJOS platform for the RCX, took part in the LEGO 
MINDSTORMS Developer Program, and is presently one of the 20 members of the LEGO MIND-
STORMS Community Partners Program. Furthermore, he is one of the contributors to the popular 
The NXT STEP blog and maintains the German-language sister blog, Die NXTe Ebene. His own 
MINDSTORMS NXT-related web site is at http://mynxt.matthiaspaulscholz.eu.



xiii

About the Technical Reviewer

■JIM KELLY is a freelance technical writer in Atlanta, Georgia. He obtained a bachelor’s degree in 
English from the University of West Florida and a bachelor’s degree in industrial engineering from 
Florida State University. He has been writing and editing for more than nine years. He is currently a 
member of the LEGO MINDSTORMS Community Partners Program and works with other members 
to improve and test the MINDSTORMS NXT and other products. Jim is the author of the Apress books 
LEGO Mindstorms NXT: The Mayan Adventure and LEGO Mindstorms NXT-G Programming Guide.



xv

Acknowledgments

First of all, I would like to thank my most amiable wife for her support and patience with all the 
evening, late-night, and weekend hours I spent on the book in the past months.

Special and very cordial thanks go to Jim Kelly who encouraged me to write this book, opened 
doors for me, and not only provided warmhearted guidance and indispensable advice but also acted 
as a tech editor for the book. 

Also, I’d like to thank all the other aficionados out there whose commitment and mad rapture 
for LEGO MINDSTORMS NXT filled me with the energy to complete all the work for the book. In 
particular, I’d like to mention Steven Canvin from LEGO, Maureen Reilly from NXTLOG, Brian Davis, 
Steve Hassenplug, Philo, and The NXT STEP gang. Thanks also to the guys from the leJOS NXJ project, 
John Hansen for NXC, Ralph Hempel for pbLua, and Daniele Benedettelli and Lukas Probst for their 
tutorials. These people are only a small section of all the enthusiastic LEGO weirdos that form a 
bustling community I’m proud to be a part of. Please bear with me if I forgot to name someone who 
particularly deserves it.

I am amazed and grateful for the work done by the production team for this book, in particular 
Kylie, Jennifer, and Laura from Apress, who did a prodigious job, and I’d like to voice my particular 
gratitude for being that dedicated and so very patient with me.



xvii

Preface

Robots have been a source of fascination to me since my childhood. That was during the time of 
the first Star Wars trilogy, with very humanlike robots appearing on the screen, such as C-3PO, who 
still reminds me of some friends of mine, and not so humanlike others, such as R2-D2 (who never-
theless also reminds me of some people I know). There were the books of Stanislaw Lem and Douglas 
Adams that discuss the philosophical questions related to the creation of artificial beings. Do androids 
dream of electric sheep? I still wonder.

Yet all my attempts to build something similar on my own failed. The gizmos I’d assembled from 
wood and plastic not only looked strangely different from the ones I had in mind, but also didn’t do 
anything (besides fall apart frequently). The time was not ripe for building robots of your own, unless 
you had a degree in electronic engineering, high soldering capabilities, and a well-endowed bank 
account to acquire all the special electromechanical parts required.

This all changed dramatically when in 1998 the LEGO Group released the LEGO MINDSTORMS 
system. At once it was possible to build robots with a technology that I and almost everyone else I 
knew was used to since childhood: LEGO bricks. In fact, I considered LEGO to be only a toy then and 
my trunk full of bricks had long ago changed possession to my little brother. But it didn’t take long to 
realize the potential of the new product line. I was even more surprised to find out that there was 
a MINDSTORMS community out there that to a large part was composed of people of my age, my 
professional IT background, and my interest in technics, in particular in robotics. Consequently, I 
bought some of the kits and expansions and indulged in the open source movement that was rapidly 
growing and bustling with energy. That is, I became one of the developers of the leJOS project, dedi-
cated to providing a Java implementation for the MINDSTORMS RCX Brick.

So the millennium went by with creating robots and trying to overcome the limitations of the 
RCX, whose technical parameters were already outdated in 1998. An update was overdue, but instead, 
the kits were beginning to disappear from the shops and it seemed that LEGO was resting on the 
laurels of MINDSTORMS, which had developed into the best-selling product in the company’s history.

Fortunately that wasn’t the case at all. 
In 2005, rumors began to spread that a successor to the RCX was to be expected. Indeed, LEGO 

announced the MINDSTORMS Developer Program (MDP) and asked for applications. I instantly 
jumped in—without much hope—as virtually everyone I knew in the community did the same. How 
great, though, was my joy when I received a confirmation that I was to be one of the blessed 100? 
As a matter of fact, I didn’t believe it in the beginning, suspecting that it was just a cruel joke by 
my friends.

It wasn’t, and what was to follow were months of fun, devotion, and creative energy. The days 
had not enough hours and the kits not enough parts to implement all the ideas that were appearing 
in my head and in those of the most interesting and different people I’ve met in the program. Well, 
one needs to bring home the bacon, but I realized then how tedious your (otherwise satisfying) 
everyday job is able to appear when you long to race home and complete the time machine you are 
tinkering with.

One of the ideas that arose rather early was to combine my NXT-related activities with another 
topic of interest to me—medieval history. It was only a small step to notice that the mechanical 
works of one of the greatest engineers ever, Leonardo da Vinci, would suit the subject tremendously 
well. However, I never dreamt of really writing a book on it, and most likely it wouldn’t have come 



xviii ■P R E FA CE  

into being if Jim Kelly—whom I’m proud to be connected to by the MDP, the blog we both write for, 
and last but not least, the books in this MINDSTORMS series—hadn’t encouraged me to do so.

Hence, here it is. I hope you enjoy it. 

Who This Book Is For
This book is about building quite complex LEGO NXT robots with a lot of different parts. You will 
learn techniques to master certain challenges in building real-world gadgets with LEGO and how to 
make best or at least good use of special parts that are contained in the NXT kit or in other ones. You 
also should get a feeling for how to transform contraptions from the “real” world into LEGO devices 
and how to use the motors and various sensors the NXT kit provides.

That said, some of the robots are rather sophisticated and comprise a lot of different parts that 
are arranged in a sometimes complicated manner. Therefore, absolute beginners who do not feel at 
least basically at ease with LEGO TECHNIC and studless building might prefer to make themselves 
familiar with these topics before trying to tackle the robots introduced in this book.

As for the software, a fundamental understanding of the basic principles of programming is 
recommended. I introduce five different environments for creating and running programs in the 
NXT, where almost each one is based in a particular development paradigm. It goes without saying 
that there’s always the option of concentrating on one single environment and leaving the others 
out; but even so, some experience with the programming paradigm in question—for instance, with 
object-oriented programming in the case of leJOS—might prove useful. Also, when it comes to the 
software, programming newbies might wish to address some tutorials before implementing the 
programs in the book.

For the NXT environments used in the book, though, no previous knowledge is required. I explain in 
detail not only their installation and configuration, but also the language constructs, which are displayed 
by example in a step-by-step manner.

In the end, you should be familiar with the strategies to implement standard challenges for NXT 
robots in the different languages and have an overview of the options available for programming the 
NXT and know which one best fits your background and taste.

How This Book Is Structured
This book is organized around chapters that recreate five inventions of Leonardo da Vinci using LEGO. 
Each of these chapters consists of the following: 

• A lecture on the historical background 

• A discussion of the hardware challenges the invention imposes on a LEGO model and the 
solution 

• Complete step-by-step building instructions

• Programming instructions for each of the five programming environments the book uses

Chapter 1: Introduction
This chapter consists of a tour through Leonardo’s life and five of his most famous inventions to be 
built with LEGO. It also introduces the NXT and its components and provides a glimpse of the NXT 
community and some of its most prominent sites.



■P R E F ACE xix

Chapter 2: A 3,000-Foot Look at NXT Programming 
Environments
This chapter discusses the five different programming environments used in this book: the official 
LEGO MINDSTORMS NXT Software, RobotC, NXC, pbLua, and leJOS NXJ. It focuses on those that 
allow running programs directly on the Brick—autonomous robots rather than those confined to 
remote control from an external device such as a computer or a cell phone. 

Chapter 3: The Armored Car
This chapter is the first robot chapter. It deals with Leonardo’s design of an armored car, a machine 
like today’s military tank. Like the following four chapters, it provides a historical background, a 
discussion of the LEGO hardware challenges and their solutions, the building instructions, and the 
programming of the robot with five different programming environments.

Chapter 4: The Catapult
This chapter introduces one of the catapults Leonardo designed and shows how to build it with 
LEGO. You will encounter the device he invented to set up kinetic energy and the touch sensor. 

Chapter 5: The Revolving Bridge
This chapter shows how to build Leonardo’s revolving bridge with LEGO. You will gain insight into 
motor synchronization and learn how to make use of the ultrasonic sensor.

Chapter 6: The Aerial Screw
This chapter presents a LEGO implementation of Leonardo’s aerial screw, also—but misleadingly—
known as the “helicopter.” It’s an introduction to mimicking curved structures and to the usage of 
the light sensor.

Chapter 7: The Flying Machine
This chapter showcases another machine invented by Leonardo for the purpose of flying and how to 
build it with LEGO. Its “flapping wings” make it different from the aerial screw. You will learn how to 
use wires to run mechanical parts and to remotely control a NXT robot.

Chapter 8: Outlook: What NXT?
This is a discussion of the conceivable steps the reader may take from here. It discusses possible 
refinements of the preceding five robots and the possibility of remotely controlling them. It sheds 
some light on other inventions of Leonardo’s that might be created with LEGO, and finally intro-
duces some web sites and books recommended for further reading.

Appendixes
This book contains four appendixes. The first provides step-by-step guides to the installation and 
configuration of the five different programming environments in this book. The second contains a 
copy of Leonardo’s letter of application to the duke of Milan that is mentioned frequently in the 
book. The final two appendixes are a glossary and a bibliography.



xx ■P R E FA CE  

Prerequisites
To complete the programming examples in the book, you will need five different programming envi-
ronments for the NXT. The first one is contained in the retail version of the NXT kit, while the others 
are available on the Internet, either for free or as trial versions. Appendix A provides all the information 
you need to download, install, and configure them for this book.

Downloading the Code
The source code for this book is available to readers at the Apress web site at http://www.apress.com 
in the Source Code/Download section. You can also check for errata and find related titles from Apress.

Additional material related to the book such as updates, videos and more can be downloaded 
from my web site at http://mynxt.matthiaspaulscholz.eu.

Contacting the Author
If you are eager to contact me for feedback, questions, or suggestions, feel free to use the contact 
page on my web site at http://mynxt.matthiaspaulscholz.eu/contact. I always try to respond to any 
approach by a reader as soon as possible.



1

■ ■ ■

C H A P T E R  1

Introduction

I have been impressed with the urgency of doing. Knowing is not enough; we must apply.
Being willing is not enough; we must do.

—Leonardo da Vinci

This book is on two topics that at first glance may appear rather disconnected: Leonardo da Vinci 
and LEGO MINDSTORMS NXT. Yet, on reconsideration you might notice that not only do the 
stupendous mechanical designs of Leonardo have much in common with NXT robots, but so do 
Leonardo—the inventor and engineer—and modern NXT robot builders. 

Leonardo’s machines were based on established designs and existing mechanical parts but 
went beyond the tradition by combining high-technology components of his time with conceptual 
audacity and brilliant ingenuity, thus creating devices that aroused the admiration of his contempo-
raries as well as people today. Same goes for NXT robots and their creators—though certainly to a 
more minor extent. LEGO TECHNIC is a well-known and established way of building LEGO machines, 
while NXT may be justifiably considered as some kind of high-technology gadget. And already creations 
of stunning imaginativeness are appearing on the scene, pushing the possibilities of NXT robotics 
farther and farther beyond the limits.

So what stands more to reason than combining these two topics, thus bridging the centuries 
and reviving the thoughts of one of the most brilliant minds in mankind’s history?

Most likely the majority of people know Leonardo as an artist, as the creator of such renowned 
works as the  Mona Lisa or The Last Supper. But as you will see in the course of this chapter, his faculties, 
interests, and achievements were much more widespread.

You will take a look into Leonardo’s life, examining five of his most prominent inventions. After 
that you will endeavor your first tour through the LEGO MINDSTORMS NXT universe.

Always keep in mind, though, that the following ramble can only provide a selection of the capa-
bilities and achievements of this stupendous universal genius.



2 CH AP T E R  1  ■  I N TR O D U CT I ON

An Invention-Driven Tour Through the Life of 
Leonardo da Vinci
No doubt Leonardo di ser Piero da Vinci is one of the most ingenious men of modern history. Justi-
fiably, he’s also one of the most well-known: almost 500 years after his death, he hasn’t ceased to 
arouse the imagination and admiration of contemporary people.

Media on Leonardo da Vinci is legion today (for a short selection, refer to the bibliography in 
Appendix D). To provide even an abstract of the many different aspects of his life, appreciating his 
capabilities on the areas of anatomy, art, and science, would decidedly be beyond the scope of this 
book. Instead, I will try to unveil his scientific career by throwing some highlights on a selection of 
his mechanical designs that may both serve as an illustration of the different fields of technological 
research he excelled in as well as help you approach his life and his way of thinking.

Renaissance Man
Like no other man, Leonardo personifies the Renaissance, a term meaning rebirth and denoting a 
time half a millennium ago when the focus of the Occident’s highbrows shifted from metaphysical 
considerations to matters that from today’s view may be considered “physical”: interest in the human 
being itself; the scientific (rather than the philosophical) heritage of the antique; the different 
phenomena mankind encounters in nature; and the use of mechanical inventions for everyday life 
challenges. It’s not without reason that the artwork that has become the symbol for the Renaissance 
is one of Leonardo’s creations: The Vitruvian Man (Figure 1-1).

■Note  Giorgio Vasari, who wrote the first biography of Leonardo in his “Vite de’ più eccelenti architettori, pittori 
e scultori italiani” (“The lives of the most excellent Italian architects, painters, and sculptors”) in the 1550s, said that 
when famous Florentine artist Andrea del Verrochio saw Leonardo’s work on the angel in The Baptism of Christ, he 
was so amazed that he resolved never to touch a brush again.

Even though there are other famous men such as Michelangelo, Albrecht Dürer, or Galilei Galileo 
who are connected to the Renaissance in the public mind, Leonardo da Vinci most likely represents 
more than anybody else the synthesis of all-embracing curiosity, open-mindedness, and ingenuity 
that characterized the Renaissance polymaths—qualities that seem to have become regrettably rare 
in today’s fragmented scientific landscape.

■Note  Some other famous Renaissance artists such as Rafael and Michelangelo lived and worked in Rome when 
Leonardo moved there from Milan in 1513, but it seems Leonardo did not come into contact with them. Maybe he 
was too consumed with his own works then, as he had resumed his theoretical researches on the laws of optical 
reflection, in particular in connection with parabolic and concave mirrors. It is a topic he had come in contact with 
previously during his early apprentice years in Verrochio’s workshop, where concave mirrors—collecting and 
amplifying the sun’s light—were used for metallurgic purposes. It is said that it is here that Leonardo witnessed the 
welding of the two hemispheres to the golden ball that is located on top of the Florentine dome today.



CH A PT E R  1  ■  I N T R OD U C T I ON 3

Figure 1-1. The proportions of the human body in the manner of Vitruvius



4 CH AP T E R  1  ■  I N TR O D U CT I ON

HISTORY OF LEONARDO

Leonardo spent much of his lifetime living in Milan. But he was no born Milanian; his place of birth on April 15, 1452, 
was Anciano, a small Tuscany village near Vinci, located in the vicinity of Florence.

It is popularly believed that his mother was a peasant woman to whom his father, the wealthy Florentine notary 
Piero, was not married. Though not uncommon these days, illegitimate children in most cases did not have it easy 
back then. However, Leonardo was lucky. His father brought him to live with him and his wife at Vinci when he was 
five years old. In 1460, the family moved to Florence. Here Leonardo most likely received an excellent education. His 
later claims of being “almost illiterate” may be considered as intentional understatements.

At age 14, he became a garzone (studio boy) in the workshop of the famous Florentine sculptor Andrea del 
Verrochio, a possible indication of the parental diligence toward him. Verrocchio today is most well-known for his 
impressive equestrian statue of Bartolomeo Colleoni in Venice, but his workshop in Florence processed orders in 
many different areas: painting, bronze statues, bells, construction machines for the building of the Florentine dome, 
mechanical theater gadgets, metallurgic works, and armory. It was here where Leonardo started to develop his 
interest in military devices, though he was nominally employed as a painting apprentice, where he obviously excelled 
as well.

By 1482 when he left Florence for Milan, Leonardo was an independent master. In 1498, the French conquered 
the Duchy of Milan, driving the Sforzas out of power. Leonardo stayed there for one more year and left in 1499. It has 
been said that the reason for this decision was because the French archers used his life-size clay model of his 
planned Gran Cavallo horse statue for target practice. As a matter of fact, it was not the first time his artistic plans 
had been impacted by the war; in 1495, 70 tons of bronze that had been set aside for the Gran Cavallo was instead 
cast into weapons for the duke during a previous French assault.

After Leonardo returned to Milan in 1508, he was again driven away when in 1513 Swiss mercenaries hired by 
the city’s patricians drove out the French. Leonardo moved to Rome where Giovanni di Medici, the son of the former 
Florentine sovereign Lorenzo (Lorenzo eventually became the infamous Pope Leo X), instructed his brother Guiliano 
to gain valuable acreage by draining the Paludi Pontine (Pontinian swamps) south of the Eternal City. Guiliano was 
happy to engage Leonardo for this sophisticated project.

Leonardo obviously had deeply impressed his French employers during his second stay in Milan. In 1517, the 
French King Francois I (nicknamed “le Roi-Chevalier,” the Knight King) invited him to France to work as his first royal 
engineer. Leonardo moved into the manor house Clos Lucé, also called “Cloux,” which was located next to the king’s 
residence at the royal Chateau Amboise and which is a museum today open to the public. The king was a genuine 
admirer of his new first engineer (“No man had ever lived who had learned as much about sculpture, painting, and 
architecture, but still more that he was a very great philosopher,” as he said), and eventually the two men became 
friends, though very unequal in age (Francois was 42 years younger).

Francois granted Leonardo and his assistants generous pensions that enabled Leonardo to concentrate on his 
theoretical studies about flying in his last two years of life. Now and then he performed some jobs also for the court 
that aroused stunned admiration—hydraulic systems for fountains, for instance, or, on the occasion of a visit of 
Florentine merchantmen, a mechanical lion (the symbol of Florence) that automatically opened its breast to spread 
lilies (the symbol of the French crown) on the delighted audience.

Leonardo died May 2, 1519, in the arms of King Francois. His remains were later moved to the chapel of Saint 
Hubert inside the castle; however, there is no longer any trace of them today, as many tombs were destroyed during 
the 16th century Wars of Religion.

Five Designs
This section explains the five designs you will build in this book:

• The armored car

• The catapult



CH A PT E R  1  ■  I N T R OD U C T I ON 5

• The revolving bridge

• The aerial screw

• The flying machine

The Armored Car

The armored car is one of Leonardo’s most well-known designs. As with all of his inventions, it came 
to us by drawings produced by Leonardo himself, an exceptionally gifted draftsman. The armored car 
resembles the concept of the military tank invented at the beginning of the 20th century (Figure 1-2).

Figure 1-2. The armored car

Leonardo apparently drew this sketch between 1482 and 1485 when he was living in Milan for 
the first time. The drawing of the armored car may have been attached to a letter that Leonardo wrote 
or had had written (in the times of no word-processing software it was common to have important 
documents written by a paid expert) to the Duke of Milan, Ludovico Sforza, nicknamed “Il Moro,” as 
an application of employment. Appendix B contains a translation of the complete text of this letter 
of application. Though we do not know the reception it got, machines of war were undoubtedly of 
major interest to a North-Italian sovereign in the politically unstable last decades of the 15th century. 
In the case of Ludovico that interest decidedly was a valid one, as the French drove the Sforzas out of 
Milan only some years later.

We may wonder about Leonardo’s dealings in military aspects and may even find it reprehensible, 
but we must not forget that at this time, war was not considered unethical but rather was looked at 



6 CH AP T E R  1  ■  I N TR O D U CT I ON

as some kind of art—at least by those who did not directly suffer from it. Furthermore, it squared with 
the interest of the Renaissance engineers in technical methods, as machines of war were among the 
most complex classical devices. And last but not least, the rulers were willing to spend incredible 
sums for military technique—not unlike today—but even more interesting to engineers, potentates 
were the most important employers of their profession in times when unemployment insurance did 
not exist.

The Catapult

Leonardo’s work on the catapult is another example of his interest in military devices. In contrast to 
the scientists in the medieval times, he did not confine himself to just copying the classical knowl-
edge but used it as a base for enhancements and amendments, true to Newton’s famous citation “If 
I have seen further it is by standing on ye shoulders of Giants” 200 hundred years later. Such is the 
case with the catapult; Leonardo invented a new spring mechanism that could generate higher energy 
for throwing projectiles farther (Figure 1-3).

Figure 1-3. The catapult

Though fire weapons had already been established by the end of the 15th century and had 
found their way onto the European battlefields, they still suffered from a lot of “teething troubles.” 
Hence, the well-proven concept of catapults was widely used, particularly at sieges where their 
multiple advantages—ease of use, high firing rate, high range, and the ability to launch a wide variety 
of different projectiles—provided a gain against cannons when using artillery against fortresses.

Leonardo made many designs for different types of catapults during his life, many of them during 
his early Florentine years. The one in question appears to have been produced during the first years 
of his work for Ludovico Sforza in Milan. It may have also been attached to the letter of application 
with the armored car.



CH A PT E R  1  ■  I N T R OD U C T I ON 7

We do not know how many of his military designs during his time in Milan made it into real 
deployment. Technical difficulties, impracticalities, and the fact that Leonardo was not employed by 
the duke as a military engineer but as the director of parades and festivities, might imply that many 
of his plans never left the theoretical stage. It’s also possible the duke was not able to recognize the 
significance of Leonardo’s designs and may have preferred other more practical and traditional 
competitors for the job. After all, Leonardo’s position enabled him to run his own workshop along-
side some apprentices. This gave him the opportunity to continue his studies without too many 
financial worries. During this time period, six major paintings, including The Last Supper, and a flood 
of technical drawings were created.

The manuscript for the catapult is part of Leonardo’s Codex Atlanticus, which is preserved in 
the Biblioteca Ambrosiana in Milan. Many of Leonardo’s drawings are collected in codices, collec-
tions of loose papers compiled by different collectors over the centuries. In most cases they are 
arranged not according to their original chronological order but, as was the custom in earlier periods, 
by a topical or even aesthetical scheme.

■Note  These codices are today distributed over the museums of the world. For example, the Codex Leicester, a 
folio of scientific observations and illustrations on natural phenomena such as water, light, and gravity, was acquired by 
Microsoft’s founder Bill Gates in 1994 and is put on public display once a year in a different city around the world. 
In 2007, it will be exhibited from June to August in the Chester Beatty Library in Dublin, Ireland.

The Revolving Bridge

The revolving bridge is contained in another manuscript that came to us with the Codex Atlanticus. 
It’s an example of another area of Leonardo’s interest: hydrodynamics, the science of the flow of 
water (Figure 1-4).

Leonardo dealt with studies on this topic during almost all of his scientific life. He believed 
water and air are similar substances and thus follow similar laws of flow. This was a surprisingly 
modern approach and was of particular interest to him in regard to his research on human flying, 
which you will read about in a later section.

Fortunately for him (and for the world), this interest squared perfectly with a practical need of 
his time: water was one of the major sources of energy then. The north Italian plain was plastered 
with water mills in these times. Furthermore, the rare roads were in bad shape and were more like 
paths than anything else. Hence, rivers and the sea were of utmost importance for transportation of 
goods and people.

As a consequence, cities such as Florence and Milan, with no direct access to the sea, were keen 
to spend a great deal of financial and material resources on making use of the rivers and any evolving 
engineering disciplines.

In Florence, young Leonardo was engaged in a canal project to make the Arno river navigable 
from Florence to the Mediterranean Sea. He was the first to propose this enhancement, according to 
Giorgio Vasari, the writer of Leonardo’s first biography. In Milan, Leonardo made further contact 
with hydraulic engineering, learning a lot about it from Milan’s impressive set of the so-called navagli, 
a network of inner-city canals. These experiences proved helpful when Leonardo turned his attention 
toward another water-related topic of even more military importance than today: bridges.



8 CH AP T E R  1  ■  I N TR O D U CT I ON

Figure 1-4. Hydrodynamic study

As cross points between streets and rivers, the two thoroughfares of transportation, bridges 
were of paramount relevance in military strategies. Bridges formed bottlenecks that could detain 
enemy troops. But this advantage could also be turned into a disadvantage if the enemy got a hold of 
the structure. Toward the end of his first decade in Milan, Leonardo developed a simple but effective 
concept to cope with this hazard: the revolving bridge. In his design, the bridge can be rotated around 
one of its end pylons (Figure 1-5). This way it could be moved away from the bank the enemy troops 
were approaching from, depriving them of the possibility to cross the river.



CH A PT E R  1  ■  I N T R OD U C T I ON 9

Figure 1-5. The revolving bridge

It is not known, though, if this bridge was ever been built somewhere around Milan.
When Leonardo left the city in 1499, he took his hydraulic knowledge with him and after three 

years of travel where he worked in different northern Italian cities, he found a cordial reception by 
the rulers of a city that was (and is) connected to water like none other: Venice.

As the Ottoman Empire had conquered Constantinople only five years before and was aggres-
sively breaking into Venice’s eastern borders, the Serenissima was in desperate need for skilled 
military engineers who had hydraulic knowledge also. As a result, in 1502, Leonardo joined the 
service of Cesare Borgio, who ruled the city as the doge. For the next two years, Leonardo planned and 
monitored the building of a defensive system on rivers, and even escorted the doge to a campaign in the 
Romagna. As an interesting side note, Leonardo did not appear to have many moral qualms about 
also working for the “other side”—an attitude he seemed to share with military suppliers of today.

■Note  Also in 1502, Leonardo planned a 720-foot bridge as part of an engineering project for Sultan Bajazet II. 
This bridge would be made completely from wood and was to span the Golden Horn, an inlet at the mouth of the 
Bosporus. Though it was never built in his time, in 2001 a Norwegian group reproduced it near the capital of Oslo, 
almost precisely 500 years after his first drawing (Figure 1-6).



10 CH AP T E R  1  ■  I N TR O D U CT I ON

Figure 1-6. The Norwegian version of Leonardo’s bridge project on the Golden Horn

Leonardo decided to leave the Venetian service after two years and return to Florence. He 
changed his employer but not his profession. The Florentine Republic engaged him both as a mili-
tary advisor as well as a hydraulic engineer. Again, both occupations were not completely separate, 
as one of his first projects was the intended diversion of the Arno River near Florence’s old enemy, 
the city of Pisa, in order to disconnect it from its water supply. Other projects also dealt with the Arno, 
but were of a more civil nature, such as the plan to extend the navigability of the river and reinforce 
the embankment near Florence to prevent floods. For that, Leonardo developed some of his largest 
machines, huge structures intended for use in canal building. It was also in these Florentine years 
between 1504 and 1508 when Leonardo painted the Mona Lisa.

The Aerial Screw and the Flying Machine

The beginning of the 16th century saw the maturing of Leonardo in an area in which he never presented 
any of his designs to a paying customer. No doubt this was due to their highly advanced and princi-
pally theoretical nature, for the matter in question was no less than the ability of human beings to fly.

OBSCURE MANUSCRIPTS

In spite of their advanced nature (or due to it), Leonardo’s mechanical achievements did not contribute to the devel-
opment of science and technology and did not influence technological progress in the early phase of modern history. 
His drawings were either obscure to his contemporaries and their offspring or totally unknown and remained so for 
300 years. But in the 19th century, engineers were able to appreciate Leonardo’s grasp of the mechanical.

More than 5,000 pages of his manuscripts are still available today. Apart from some superficial mentions of 
Leonardo and his works in some almanacs in the 16th century, these drawings are the only sources of his scientific 
research that have survived as far as we know.

Leonardo did not publish or otherwise distribute the contents of his notebooks. He did not wish for anybody to 
see or use his manuscripts. Apart from some drawings he produced for presentation to potential clients, his notes 
were intended for internal use, as some sort of mind maps. He even took up the habit of laying down the (often just 
fragmentary) textual explanations next to the actual drawings in mirror writing. In other words, he wrote from right 
to left so the finished text was the mirror image of normal writing, as shown in the illustration; he did so presumably 
in order to prevent possible business rivals from stealing his ideas. 



CH A PT E R  1  ■  I N T R OD U C T I ON 11

Furthermore, Leonardo was left-handed, which would have made writing from left to right pretty cumbersome 
for him. Writing feathers were shaped to be used by “ordinary” right-handed people then. This left-handedness, 
though, has helped to distinguish manuscripts written by him from similar ones from this period of time.

Due to the worksheet nature of his manuscripts, many of them were reengineered and extended in the course 
of Leonardo’s life, sometimes even with nontechnical content. This is what made his manuscripts obscure and 
ambiguous to external readers. In modern times, people are apt to attach concepts of today’s world to them. For 
example, some people inaccurately think he invented the helicopter when he drew the aerial screw. We have to be 
very careful with such misinterpretations, though there are instances where Leonardo’s ideas appear to anticipate 
modern inventions indeed.

Leonardo was fascinated by flight all of his life and had become convinced that a human being 
could fly by his own muscle power, an idea he was deeply committed to and didn’t give up until his 
death: “.... you will see the human being with big wings created by him, who will lean against the 
resistance of air, vanquishing it, being able to outplay and to rise above it,” he wrote in 1486. In his 
opinion, the principal issue was to develop enough energy for the lifting mechanism. That belonged 
to a class of problems that could be solved by engineering: amplifying the power generated by a 
human’s body by mechanical means. Navigability once the person was in the air was apparently not 
in the focus of his efforts, as there are not any noteworthy steering contraptions found in any of his 
according designs.



12 CH AP T E R  1  ■  I N TR O D U CT I ON

As previously mentioned, Leonardo considered air a substance that is a lightweight relative of 
water and thus would follow similar mechanical laws. This general idea led him in 1485 to the design 
of an aerial screw, a device that should “screw” itself into the air like a screw into water (Figure 1-7).

Figure 1-7. The aerial screw

In his opinion, the only major problem to solve was the generation of a revolution speed fast 
enough to make the whole device leave the ground. Obviously, the concept of lift and different levels 
of pressure on parts moving through the air was unknown to Leonardo, disqualifying the aerial screw 
as a helicopter; the aerial screw follows a completely different approach.

Leonardo developed many of his ideas for flying contraptions from his anatomical studies. In 
his opinion, the basic mechanical setup of all living creatures was similar. Hence, these capabilities 
were not out of the question (e.g., he intensely studied flying fish), in particular when appropriately 
supported by mechanical means.



CH A PT E R  1  ■  I N T R OD U C T I ON 13

Hence his approach toward flying was two-fold. On one hand, he followed the path of creating 
machines that should amplify man’s power as far as possible. One or more pilots were meant to 
stand upright, sometimes even being required to move their heads and legs in addition to their arms 
to achieve maximum exploit of the body’s muscles. On the other hand, he tried to mimic the mode 
of operation of birds, insects, and other flying animals, as in the case of his famous design of the 
flying machine (Figure 1-8).

Figure 1-8. The flying machine

It was in the first decade of the 16th century that Leonardo wrote a treatise on the flight of birds. 
Though he tinkered with small models of many of his designs for empirical studies, there is no 
evidence that any of his flying machines—including the aerial screw and the flying machine—had ever 
been actually built during his lifetime. However, in our time some of them have been built and tested. 
His plan for a parachute has been certified to work by a skydiver who used it to jump out of a balloon 
9,000 feet above the ground.

LEONARDO’S THEATER STAGE SET FOR ORPHEUS

Leonardo designed an ingenious theater stage set for the popular myth of Orpheus, shown in the following figure. 
It comprised two hemispheres that could be modeled and painted according to artistic need. They could be opened, 
closed, and rotated. Hence, with a dramatic theatrical effect, the underworld scene could be brought to the specta-
tors’ view by a circular and opening movement, with Pluto emerging on a platform from below accompanied by devils 
and furies.



14 CH AP T E R  1  ■  I N TR O D U CT I ON

It might seem surprising for an engineer to be involved in the theater. However, when considering that Leonardo held 
the position of director of parades and festivities during his first years in Milan, and that the fine arts and mechanical 
gadgets played an important part in the Renaissance, Leonardo’s activities in that area do not appear that far-fetched. As 
a matter of fact, it was his capability as a musician that gave the impact for his initial visit to Milan in 1481. Having 
built a silver lyre in the shape of a horse’s head, he presented it to Duke Lorenzo di Medici (nicknamed “Il Magnifico”), 
the ruler of Florence. The duke, who was given more to diplomacy and good relations with his neighbor cities than 
to war, considered the beautiful lyre an ideal gift of peace for the authorities of Milan. The duke felt that young 
Leonardo, who could not only play the lyre very well, but was considered by his contemporaries to be exceptionally 
talented, handsome, and charming, was ideally suited for the diplomatic mission of delivering the lyre to Ludovico 
Sforza. Leonardo not only delivered the splendid lyre to Ludovico but also played it in a musician’s competition and, 
according to his biographer Vasari, “played the (horse-shaped) lyre better than any other musicians at Ludovico’s 
court.”

Leonardo designed a lot of machines intended for use in performances and already had acquired some repu-
tation as a stage engineer during his first sojourn in Milan. For the Milanese paradise feast he created a set of 
revolving hemispheres populated with actors impersonating the planets.

Yet, it likely was primarily not that part of his curriculum that induced the new rulers of Milan, the French, to 
offer him a position as peintre et ingenieur ordinaire. As a means of strengthening their position, the French were in 
need of skilled military engineers, and Leonardo still had an according reputation in the city. Eventually, in 1508, he 
accepted the offer and moved to Milan again. Here he not only turned to designing and building fortresses but again 
became concerned with hydraulic projects, this time with sluices, for a possible connection between Milan and Lake 
Como in the Alps. It was also during these years that he created the theater stage set for Orpheus.

 

■Note  In Vasari’s biography of Leonardo, he said “[T]he greatest of all Andrea’s pupils was Leonardo da Vinci, in 
whom, besides a beauty of person never sufficiently admired and a wonderful grace in all his actions, there was 
such a power of intellect that whatever he turned his mind to he made himself master of with ease.” Because there 
is no known portrait of Leonardo in his youth, the only hint of how the great man may have looked is in two supposed 
self-portraits in his later years. One of these is shown in Figure 1-9.



CH A PT E R  1  ■  I N T R OD U C T I ON 15

Figure 1-9. Supposed self-portrait of Leonardo

The LEGO MINDSTORMS NXT
Now that you are acquainted with Leonardo and his life, let’s take a look at the other topic this book 
deals with: LEGO MINDSTORMS NXT. In this section you will become familiar with the components 
that make up the new NXT, bridging Leonardo’s world and applying this knowledge to his mechan-
ical designs and reviving them with modern means.

In 1998, LEGO released the first generation of its MINDSTORMS line, the RCX: kits consisting of 
electric motors, sensors, LEGO bricks, and LEGO TECHNIC pieces grouped around a central control-
ling unit. Along with a bunch of extension kits, it developed into the most successful product in the 
company’s history. Eight years later its successor, the LEGO MINDSTORMS NXT, finally saw the light 
of day, first in the United States in August 2006, and two months later in Europe.

The NXT ships in two versions:

• The retail version with 577 parts.

• The education base set with only 431 parts, but with a rechargeable battery and charger. It 
lacks the retail version’s programming software, which is sold separately under different 
licenses for schools.



16 CH AP T E R  1  ■  I N TR O D U CT I ON

Hardware
Let’s take a look at the hardware components of the NXT. There are four main categories:

• The central controlling unit: the NXT Brick

• Output devices: motors 

• Input devices: sensors

• Means of communication: Bluetooth

The NXT Brick

The central component of the NXT is the programmable controller, also known as The Intelligent 
Brick (Figure 1-10). It’s the NXT’s brain, featuring a 32-bit ARM7 microcontroller with 256K flash and 
64K RAM memory—running at 48MHz—and a second 8-bit AVR microcontroller with 4K flash and 
512B RAM memory, running at 4MHz.

The four input ports are used for connecting the sensors, while the three output ports are for 
attaching the motors (Figure 1-11). The connections are digital, hence it is possible to extend the 
amount of available sensor and motor ports by adapters.

Figure 1-10. The NXT Brick



CH A PT E R  1  ■  I N T R OD U C T I ON 17

As shown in Figure 1-11, the connections are made using cables that resemble telephone cables, 
though the end connectors are mirrored, allegedly to prevent children from connecting their NXT to 
the telephone box. One of the input ports is IEC 61158 Type 4/EN 50 170–compliant, meant to be 
used for future high-speed expansions.

Figure 1-11. The NXT Brick with motors and sensors attached

The connection to the PC can be established over a USB cable attached to a USB 2.0 port next to 
the output ports or over the Brick’s Bluetooth connectivity, which is also a means for communica-
tion with other Bluetooth-enabled devices such as PDAs or mobile phones.

On top of the Brick, there is a 100 × 64 pixel LCD display and four buttons that control the Brick’s 
operating system: orange for on/off; dark gray for clear/back; and two light-gray buttons for navi-
gating the menus displayed on the LCD.

A built-in speaker provides 8kHz sound quality over a sound channel with 8-bit resolution and 
a 2kHz–16kHz sample rate.

The Brick is powered by six AA batteries that do not come with the retail kit, or a rechargeable 
battery pack that comes with the education base set.

Oh, and if you always wanted to know how the Brick looks inside, see Figure 1-12.



18 CH AP T E R  1  ■  I N TR O D U CT I ON

Figure 1-12. The Brick’s inner life (Image courtesy of Jürgen Stuber)

■Caution  Don’t try opening the Brick at home!

Motors

The NXT kit comes with three motors (Figure 1-13).

Figure 1-13. A NXT motor



CH A PT E R  1  ■  I N T R OD U C T I ON 19

You will notice that they appear rather large and bulky compared to the RCX motors. This is due 
to the high inner gearing that makes the motors much more powerful and reliable than the RCX’s 
motors (Figure 1-14). But as a result, NXT robots are much larger than RCX ones.

Figure 1-14. Inner gearing of the NXT motor (Image courtesy of LEGO Education)

NXT motors are servos. That means that their internal position and state can be controlled from 
an external unit—in this case the NXT Brick. This is done using the in-built rotation sensor, enabling 
the Brick to control the motor very accurately. It can be rotated precisely up to 1 degree or run at a 
particular speed. Furthermore, two motors can be easily synchronized, which allows for precise 
straight driving. Anyone who has built a mobile RCX robot will quickly remember the problems these 
robots have staying on a straight course.

Since the controlling Brick can track changes of a motor’s state, a motor can also be used as a 
“wired remote control.”

Sensors

Sensors allow the NXT robot to get insight about and respond to the outer world. To this end, the 
NXT kit comes with four types of sensors; the kit contains one of each. There are additional sensors 
available, created and sold by third-party vendors.

Touch Sensors

The touch sensor is like a bumper; it enables the robot to detect press-and-release events. This kind 
of sensor can be used to detect very near obstacles. Figure 1-15 shows a touch sensor.

Figure 1-15. The touch sensor



20 CH AP T E R  1  ■  I N TR O D U CT I ON

Light Sensors

The light sensor is a rudimentary device that lets the robot “see” in a very limited sense. Measuring 
the amount of light that reaches the sensor’s inlet, it allows for distinction between bright and dark, 
similar to an amoeba. Figure 1-16 shows a light sensor.

Figure 1-16. The light sensor

Though there’s no built-in color detection, areas of different colors will give rise to different 
numerical values of reflected light. After all, these are not absolute but relative values, depending for 
instance on ambient light. This makes color detection with the light sensor pretty unreliable and 
context-dependent. The light sensor also has a small lamp to emit a red light, which is useful for illu-
mination of dark environments and for amplification of reflected light.

Sound Sensors

The sound sensor is the robot’s “ear.” It can detect sounds in two different modes. First, it uses a 
mode called adjusted decibels (dbA) that mimics the way the human ear actually measures ambient 
sound. This means that the sensitivity of the sensor is adapted to the sensitivity of the human ear, 
ignoring very low or very high frequencies. The other mode, called standard decibel (db), is simpler 
and plainly registers the whole frequency bandwidth equally.

Figure 1-17 shows a sound sensor.



CH A PT E R  1  ■  I N T R OD U C T I ON 21

Figure 1-17. The sound sensor

The sound sensor will deliver its results as percentages of its maximum volume of 90 decibels 
(which is equal to the noise of a lawn mower). For instance, values up to 5% reflect silence, 5–10% 
reflects distant talking, and 10–30% reflects nearby talking or low music.

It stands to reason that this kind of measurement does not allow for very precise control of the 
robot by sound. In particular, it’s not meant to be used for voice recognition or the like.

Ultrasonic Sensors

The ultrasonic sensor is a type of sensor that is new to the MINDSTORMS world and has not been 
available with the RCX. Its eyelike shape might be considered to be like the robot’s eyes, indeed 
enabling it to have a look at what’s around it. Figure 1-18 shows an ultrasonic sensor.

Figure 1-18. The ultrasonic sensor



22 CH AP T E R  1  ■  I N TR O D U CT I ON

The sensor works in the way bats or submarines detect objects, with sonic signals of high frequency 
that are reflected by an object and received by the sensor again. The sensor is able to compute the 
distance to the object by measuring the running time of a single signal. Hence, the sensor can be 
used to attain two kinds of information—whether an object reflects signals at all, and if so, how far 
away it is. Depending on its mounting on the robot and the kind of object it detects, the LEGO ultra-
sonic sensor’s detection range is up to 100 inches.

The ultrasonic sensor mainly serves as a means for touch-free object detection. Its great advan-
tage to the touch sensor is that no physical contact with the object is required. This makes it possible 
to avoid objects much earlier. Yet, there’s a drawback to this also. The sensor can’t be used in an area 
where another ultrasonic sensor is actually at work. The sensor’s signals will be interlaced with the 
signals of the other. Furthermore, since the signals are not labeled as its own, it will not be able to 
distinguish the reflection of its signals from the emission of the other sensor. Moreover, surfaces that 
swallow up or disperse signals, such as soft, round, or very jagged ones, are hard to detect and apt to 
be missed.

Bluetooth

Bluetooth is an industrial specification for wireless personal area networks and provides a way to 
connect and exchange information between different kinds of devices, such as PDAs, mobile phones, 
computers, cameras, and so on, via a globally unlicensed short-range radio frequency. Figure 1-19 
shows a Bluetooth adapter.

Figure 1-19. A Bluetooth adapter



CH A PT E R  1  ■  I N T R OD U C T I ON 23

In addition to the USB cable discussed in the earlier section on the NXT Brick, the NXT allows 
for wireless communication also by providing Bluetooth Class 2 connectivity. Thus, an NXT Brick 
can talk to and receive messages from other Bluetooth-enabled devices such as a computer, a mobile 
phone, or other NXT Bricks up to the distance of approximately 10 meters.

The Bluetooth connectivity is established using the LEGO MINDSTORMS NXT Software 
(Figure 1-20).

Figure 1-20. LEGO MINDSTORMS NXT Software utility for the NXT Bluetooth connectivity

In particular, this connectivity can be used to upload or download programs or other software 
artifacts from or to the Brick or to remotely control the robot.

The Brick can be connected to up to three other devices at a time. However, it can only commu-
nicate with one at a time.

The NXT device can be made invisible to other devices. The Bluetooth connectivity can even be 
switched off completely, mainly to save battery power.

It should be noted that NXT supports only particular Bluetooth stacks, for instance the Bluetooth 
software included in Microsoft Windows XP Service Pack 2 and WIDCOMM Bluetooth Software for 
Windows version 1.4.2.10 SPS or newer. A complete list can be found on the official LEGO MINDSTORMS 
NXT web site at http://mindstorms.lego.com/.

Software
Like any programmable device, the NXT requires a good deal of software. Without it the Brick and its 
attached hardware components would simply be a collection of plastic and metal lying motionless 
on your table. 

To bring a NXT robot to life, you need some things that pretty much all computerized gadgets 
depend on:

• Operating system: the firmware

• Data store: the NXT file system

• Administrative tools: the Try Me feature and the programming software 

Firmware

The NXT Brick brings along its own firmware (a piece of software that is embedded into hardware), 
which can be thought of as the operating system of the NXT. Since it is stored in the flash memory, it 
will not be erased if you switch off the NXT or remove the batteries.

The firmware comes with the kit and has to be downloaded from the PC to the NXT at least once. 
However, you may erase it or reload it as often as you wish (well, almost—there’s a limit of around 
70,000 times after which the involved hardware components won’t work reliably any more), for instance, 



24 CH AP T E R  1  ■  I N TR O D U CT I ON

when there are updated versions of the firmware available. New versions of the firmware are released 
frequently; the official version at the time of the writing of this book was 1.05.

You can even replace it with other kinds of appropriate firmware that may offer better perfor-
mance, particular features, or support for a special programming language. An example of the latter 
is RobotC, a language for the NXT that runs on its own separate firmware. This firmware has to be 
downloaded to the NXT before you can use the language.

You will have a look at RobotC in the following chapter.
In summer 2006, LEGO released a software developer’s kit (SDK) that included documentation 

for interfacing with the MINDSTORMS NXT driver on the PC or Mac as well as documentation for the 
executable file format on the NXT and how the firmware’s Virtual Machine (VM) executes these files. 
Moreover, the company published the firmware itself as open source in December 2006.

NXT File System

The NXT’s flash memory also contains a file system named Table of Contents (TOC). It is used to 
store persistent artifacts such as programs and data files and allows for a maximum number of 63 items. 
You can inspect the file system by using a utility of the LEGO MINDSTORMS NXT Software (see 
Figure 1-21). Note the different types of files on the Brick, as displayed on the left panel.

Figure 1-21. LEGO MINDSTORMS NXT Software utility for inspecting the NXT file system

Try Me

The NXT comes with a built-in program that provides a graphical menu on its display. Here you can 
do several administration tasks such as switching the Bluetooth connectivity on or off, connecting to 
other devices, starting or stopping programs, or getting information on the state of your Brick.

One of the most helpful features is the Try Me function. Using it, you can test all the sensors and 
motors attached without having to write a program for it. For instance, you can attach one or two motors 
to the output ports and run them in a given sequence, or test the reaction of an ultrasonic sensor.

Programming Software

The NXT kit also provides its official programming environment, the LEGO MINDSTORMS NXT 
Software. We already have encountered it in the hardware section and will have a look at in Chapter 2.



CH A PT E R  1  ■  I N T R OD U C T I ON 25

The NXT Community
When LEGO at the end of 2005 announced the NXT, a community for it was instantly created on the 
World Wide Web. The Internet appears to be the perfect platform for NXT aficionados. This commu-
nity is still growing, with new blogs, private NXT-related sites, and new videos every week.

This section takes a short look at some of the most prominent and popular parts of the community.

The MINDSTORMS Developer’s Program
At the end of 2005, the LEGO Group’s robotics team announced a program called MINDSTORMS 
Developer Program (MDP). An exclusive group of 100 people was provided with beta versions of 
LEGO MINDSTORMS NXT kits to test them and help guide the product development process for 
NXT. Another more limited handful of LEGO aficionados (called “MUPpets” based on the name of 
the project: MINDSTORMS USERS Program) were included in the actual product development. 
There was no application process, and the existence of this group was not made public.

During the winter of 2005/2006, more than 96,000 robotics enthusiasts from 79 countries between 
the ages of 18 and 75 applied online for the MDP. In February 2006, the 100 lucky ones (including this 
book’s author) were chosen and given access to an online forum that was set up to provide feedback. 
The members of the program were and still are under a nondisclosure agreement, whereas some 
parts of the MDP were allowed to be made public after May 1, 2006.

Until the official end of the program in August 2006, most of the members were extremely busy 
with exchanging ideas on the NXT with LEGO and influencing the product to be released. All parties 
participating in the MDP consider it a tremendous success today. It’s not surprising, therefore, that 
LEGO set up a successor, called the MINDSTORMS Community Partners (MCP) program where 
approximately 20 people, partly chosen from the MCPs, are meant to help establish and deepen the 
connection between the NXT community and the LEGO Group.

LEGO.com MINDSTORMS Community NXT
Some of the major results of the MCP, information on some of its most committed members, and a 
lot of interesting robots can be found on LEGO’s official community page at http://mindstorms.
lego.com. This site is also the place for announcements, press releases, and company news regarding 
the NXT product. It also features downloadable media such as wallpapers, desktop icons, and a web 
site toolkit for building your own NXT web site. It is the exclusive source for new releases of the LEGO 
MINDSTORMS NXT Software. Moreover, LEGO has started to provide building instructions for 
advanced robots designed by the LEGO robotics team, including the recent sound-playing robot 
and a truly prodigious classic cuckoo clock.

However, the most interesting feature on the web site arguably is NXTLOG, most likely the 
largest repository for NXT robots on the Web. It’s a fully moderated community where members may 
upload their NXT projects with photos, descriptions, and building instructions, thus sharing their 
designs with the community. Each week projects are chosen as “Projects of the Week.” By April 2007, 
there were more than 1,800 projects published. Everyone, including those who do not have a project 
of their own to contribute, is welcome to get inspired by the contents of NXTLOG. Hence, whenever 
you are out of ideas for your next NXT, feel free to have a look there.

MINDSTORMS Education NXT
When LEGO launched LEGO MINDSTORMS in 1998, it also developed LEGO MINDSTORMS for 
Schools, the educational version of the MINDSTORMS concept. It was meant to help students become 
familiar with science, technology, engineering, and math. To this end, LEGO MINDSTORMS for Schools 
combines the LEGO MINDSTORMS system with the very popular programming software ROBOLAB. 



26 CH AP T E R  1  ■  I N TR O D U CT I ON

Today, LEGO MINDSTORMS for Schools is used in more than 25,000 educational institutions world-
wide, from elementary schools to universities.

The educational branch of LEGO, called LEGO Education, has been very active in supporting 
teachers in providing new ways of teaching traditional curriculum areas. The basic idea is making 
the teaching and learning of science and technology an adventure by focusing on firsthand experi-
ence with construction, mechanisms, energy, and programming techniques. The traditional way of 
memorizing external knowledge is discouraged here; instead, students are asked to use their indi-
vidual problem-solving skills and imagination in challenges while cooperating with their fellow students.

LEGO has created a separate version of the NXT kit for the educational branch. With the arrival 
of this kit, the MINDSTORMS Education NXT site (http://www.legoeducation.info/nxt) was created. It 
is targeted particularly at teachers and other educators, but other people can also find a lot of inter-
esting material there, including a NXT blog, building instructions for a lot of unique robots, and a 
store where you can buy a lot of NXT-related items; some of them available exclusively.

The NXT STEP
With blogs (web sites where entries are made in journal style and displayed in a reverse chronolog-
ical order) becoming enormously popular in the past few years, those related to the NXT have also 
sprung up like mushrooms. One of the earliest and still most popular blogs is The NXT STEP (http://
thenxtstep.blogspot.com), founded by MDP James Kelly in March 2006 and coauthored by a lot of 
other members of the MDP (including, once again, this book’s author).

The NXT STEP has gained a reputation for not only being very active and often the first blog 
to spread news on the NXT but also for setting a high standard for qualified content. The blog has 
become pretty popular since its creation; it’s listed on the official LEGO NXT community page and 
reached its 900th post as of April 2007, with more than 30,000 unique visitors in that month.

nxtasy.org
Another increasingly successful means of communication in communities are forums, essentially 
web sites composed of a number of member-written threads, where each thread entails a discussion 
or conversation in the form of a series of posts. It stands to reason that this kind of exchanging of 
information is perfect for a NXT robot community, and it’s no surprise that today there are a lot of 
NXT-related forums to be found on the Web. One of the first was nxtasy.org (http://nxtasy.org), 
founded by Eric Salinas in June 2006. It quickly became the largest online forum for the NXT, having 
gained almost 750 members by March 2007.

Besides the forum and several subforums that deal with NXT software, hardware, projects, and 
other general topics, there are frequent challenges to the members. In addition, there’s an active 
blog with prominent contributors and a repository with a lot of interesting NXT robot projects.

mynxt.matthiaspaulscholz.eu
I’ll take the opportunity here to draw your attention to my own NXT-related web site at http://
mynxt.matthiaspaulscholz.eu. It’s linked to many of the previously mentioned sites and has found 
and is still finding the interest of a lot of people. For instance, around 3,000 unique visitors went to 
the site as of March 2007.

The site features a bunch of robots created by me along with their building instructions, links to 
NXT-related tools, programming languages, and other NXT-related information on the Web as well 
as a Middle-European-focused events page and a contact page where you can send messages to me; 
I always try to respond.



CH A PT E R  1  ■  I N T R OD U C T I ON 27

It goes without saying that the NXT universe is growing still, and there’s an abundance of other 
interesting web content out there related to the NXT.

For a list of some other sites that I consider worthwhile, refer to Appendix D of this book.

Summary
In this introductory chapter, you made a tour through Leonardo’s life, built around some of his most 
prominent inventions. You should now be familiar with him and his major works and be able to put 
them into perspective with the historical context of the Renaissance era as well as appreciate their 
uniqueness. You also met the latest member of the LEGO MINDSTORMS family, the NXT, and learned 
about its components and capabilities. I hope that you are looking forward to implementing 
Leonardo’s inventions with LEGO, as you will do in the following chapters.

Last but not least, I introduced some of the main protagonists of today’s NXT online community. 
You should know by now where to start when making your first steps with the NXT. In the following 
chapter, I will acquaint you with some of the most interesting programming environments.



29

■ ■ ■

C H A P T E R  2

A 3,000-Foot Look at NXT 
Programming Environments

He who loves practice without theory is like the sailor who boards ship without a rudder and
compass and never knows where he may cast.

—Leonardo da Vinci

Building a NXT robot is fun and the result is commonly pleasant to behold. Yet, a robot that does 
not actually do anything is not a real robot; a robot is defined as “an electromechanical device that 
can perform autonomous or preprogrammed tasks.” The fun of looking at a newly built robot is 
nothing next to the pleasure of watching your own creation walking, driving, grabbing, avoiding, 
recognizing—in a nutshell, behaving—even if its behavior is sometimes (some might say most of the 
time) different from the one you originally intended.

To that end, a robot needs to be programmed. Programming a robot can be as much fun as 
building it. On the other hand, it can turn into drudgery if you use the wrong tool, the wrong language, 
or the wrong program design. Mind that wrong in this sense means “not suited for the context.” 
There is not one tool or one language for the domain of NXT robot programming. A tool or language 
that fits a particular task or given skill better than another might not be suitable in a different 
programming challenge. The trick is to choose the right tool for the right context.

On the following pages you will take a tour through some existing programming environments 
for the NXT that will provide you with a toolbox to choose from and the knowledge of what to choose 
when. There are a lot of programming environments available—some commercial, some provided 
by the community—but I will concentrate on the ones that are executable directly on the Brick, in 
contrast to those that run on the computer and control the Brick remotely, which in my view does 
not comply completely with the concept of autonomous robots.1

Of course, this is just a 3,000-foot view. Discussion of the details of the programming environ-
ments or their advantages and drawbacks is out of the scope of this book. However, you can find 
some reading recommendations in Appendix D on this topic. For each of the environments discussed in 
this chapter, there’s an associated paragraph in Appendix A that will help you install and configure 
it on your machine as well as download the programs and run them on your Brick.

1. For a pretty complete overview on presently available programming environments for the NXT, see 
Steve Hassenplug’s site at http://www.teamhassenplug.org/NXT/NXTSoftware.html.



30 CH AP T E R  2  ■  A  3 , 0 0 0 - F O OT  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS

LEGO MINDSTORMS NXT Software
The LEGO MINDSTORMS NXT Software is the software that comes with the NXT retail kit. It is the 
software developed and distributed by the LEGO Group itself and is endorsed by the company for 
programming NXT robots. The following image shows the LEGO MINDSTORMS NXT Software 
loading.

The LEGO MINDSTORMS NXT Software is available for Windows XP and the Mac and was 
developed for LEGO by National Instruments, an Austin, Texas–based company specializing in auto-
mated test environments and virtual instrumentation software. National Instruments produces the 
proprietary LABVIEW programming platform that uses a dataflow language, called G, with a graphical 
syntax. ROBOLAB software, the programming software created for the original LEGO MINDSTORMS for 
Schools product by National Instruments in 1998, is based on LABVIEW. LEGO MINDSTORMS NXT 
Software was built on top of LABVIEW. Consequently, the programming language used in the LEGO 
MINDSTORMS NXT Software was named NXT-G.

In the next section I illustrate the basic concepts of that programming language so you will 
understand the different areas of the IDE later on.

NXT-G
NXT-G is a dataflow language—NXT-G programs are modeled as directed graphs of the data flowing 
between operations. This modeling is done using a graphical notation, comprising blocks, which 
visualize operations, and sequence beams, which control the flow of your program. The beams indi-
cate the sequence in which the blocks connected by them will be executed when the program actually 
runs on the Brick (Figure 2-1).

Figure 2-1. Dataflow in a simple NXT-G program

In contrast to popular imperative languages such as BASIC, C, and Java, there is no sequence of 
commands that the programmer is laying down in a textual way. Instead, NXT-G programs are created 
by using drag-and-drop to place different types of blocks on the work area and connect them with 



CH AP T E R  2  ■  A  3 , 0 0 0 - F OO T  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS 31

beams and data wires. Before downloading such a program to the Brick, the program automatically 
gets compiled into assembler code that can be executed by the firmware. The LEGO MINDSTORMS 
NXT Software allows for creating your own blocks in addition to those that initially come with the 
software. You can also import blocks created and published by other NXT-G programmers. 

Blocks

By default, the software offers a wide variety of NXT-related blocks.2 In addition to the blocks in the 
following sections, there are a number of other utility blocks, for instance for data type conversion, 
mathematical operations, generation of random numbers, access to the Brick’s file system, and more. 

Output Control

Control for output devices such as motors, sound, and LCD is provided by the following blocks:

• Motor block: Controls the movement of one single motor.

• Move block: Controls and synchronizes the movement of two or more motors.

• Rotation sensor block: Counts the degrees or full rotations of a motor.

• Sound block: Plays a tone or a sound file.

• Display block: Displays text, an image, or a custom shape on the NXT’s LCD screen.

Input Control

Control for input devices such as sensors is provided by the following blocks:

• Touch sensor block: Provides access to the present state of a touch sensor.

• Sound sensor block: Serves as a sound detector that provides the current sound value and 
sends true or false when the sound value is above or below a given level.

• Light sensor block: Measures ambient light on a light sensor or turns on or off the light 
sensor’s lamp.

• Ultrasonic sensor: Checks for reflections of signals detected by an ultrasonic sensor.

Communication

Communication is handled by the following blocks:

• Send message block: Sends Bluetooth messages.

• Receive message block: Receives Bluetooth messages.

Program Flow

Control on the program’s general flow is achieved by using the following blocks:

• Wait block: Lets the program pause until a certain sensor value is reached or a certain amount 
of time has passed by.

• Loop block: Repeats a portion of the program until a condition is complied with, such as 
elapsed time, the number of repetitions, a logic signal, or a sensor state.

2. It has been announced that future versions of the LEGO MINDSTORMS NXT Software will have additional blocks.



32 CH AP T E R  2  ■  A  3 , 0 0 0 - F O OT  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS

• Switch block: Chooses between two or more sequences of code according to a particular 
condition.

• Stop block: Stops a running program, running motors, lamps, and sounds.

Other Blocks

There are some blocks that do not fit the previous categories:

• Timer block: Reads or resets the value of three built-in timers that start counting when a NXT-G 
program starts. 

• Record/play block: Allows for the recording of movements of the robot. Once you’ve recorded 
a sequence of movements, you can switch the block to “play” mode; the robot will repeat the 
recorded movements. 

Custom Blocks

One of the most useful features of the LEGO MINDSTORMS NXT Software is the ability to create and 
use custom blocks. Custom blocks may be seen as user-defined subprograms consisting of sequences 
of blocks connected by beams and data wires.

Creating a custom block, a so-called My Block, is easy; just use the My Block Builder on the 
Custom Blocks palette by selecting a number of blocks in the work area and grouping them together 
into your own block with a customized icon (Figure 2-2).

Figure 2-2. Defining your own custom block



CH AP T E R  2  ■  A  3 , 0 0 0 - F OO T  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS 33

The newly created My Block will appear on the Custom palette and can be used in further 
programs like any other block and shared with others (Figure 2-3).

Figure 2-3. Using a custom block

Variables

NXT-G also supports the concept of global variables. Whenever you need to set a value that should 
be globally accessible by other blocks, you might consider defining such a variable.

Variables are defined using the Define Variable command in the Edit menu of the IDE. Your new 
variable has to be named and its type of data has to be specified; however, only Text, Number, or 
Logic variable types are possible here (Figure 2-4).

Figure 2-4. Defining a variable in NXT-G

Variables can then be used in a program by simply dragging and connecting a variable block to 
the program graph (Figure 2-5).



34 CH AP T E R  2  ■  A  3 , 0 0 0 - F O OT  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS

Figure 2-5. Using a variable in NXT-G

Note that variables are of particular importance when using custom blocks; they are a means to 
mimicking the passing of parameters to the block.

Data Wires

You might have already asked yourself how actual data values are passed between blocks. To this 
end, NXT-G offers the concept of data wires, model elements visualized as lines (Figure 2-6).



CH AP T E R  2  ■  A  3 , 0 0 0 - F OO T  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS 35

Figure 2-6. A data wire passing a data value between two blocks

Each block possesses a data hub, where the types of values it can provide are accessible. By 
connecting the ports on the data hubs of two blocks, the target block at the end of the wire can access 
the value stored in the source block at the wire’s beginning.

IDE
Once you install and start the LEGO MINDSTORMS NXT Software, you can see the integrated devel-
opment environment (IDE), as shown in Figure 2-7.

The IDE consists of six different areas that enable you to perform all the tasks that are required 
to write programs for the NXT, to download them to the Brick, and to run them there:

• Toolbar: The area that allows you to trigger most frequently used commands

• Programming palette: The store for the different types of blocks

• Work area: The canvas to compose your programs on

• Configuration panel: The area to configure the separate blocks on the work area in detail

• Controller: The tool to compile, download, and run programs

• Robo Center: The bridge to the NXT community



36 CH AP T E R  2  ■  A  3 , 0 0 0 - F O OT  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS

Figure 2-7. LEGO MINDSTORMS NXT Software IDE

Toolbar

On the toolbar, you can start the most frequently used commands, such as loading or saving programs, 
administrating your custom blocks, updating the firmware, and calling help. Figure 2-8 shows the 
toolbar.

Figure 2-8. LEGO MINDSTORMS NXT Software IDE toolbar

Programming Palette

The programming palette is the container for the model elements that you can use in your program. 
For more productive work, it’s separated into three tabs:

• Common palette: Contains the most frequently used blocks

• Complete palette: Contains all available blocks

• Custom palette: Contains the blocks you’ve created yourself or imported

Figure 2-9 shows the programming palette.



CH AP T E R  2  ■  A  3 , 0 0 0 - F OO T  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS 37

Figure 2-9. LEGO MINDSTORMS NXT Software IDE programming palette

Work Area

The work area is where the actual programming takes place. Blocks are dragged from the palette and 
connected to beams here (Figure 2-10).

Figure 2-10. LEGO MINDSTORMS NXT Software IDE work area



38 CH AP T E R  2  ■  A  3 , 0 0 0 - F O OT  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS

Configuration Panel

You will use the configuration panel to configure the blocks that are part of your program. Each block has 
a set of configuration settings that will be displayed and may be filled with values when the block is 
selected in the work area. Figure 2-11 shows the configuration panel.

Figure 2-11. LEGO MINDSTORMS NXT Software IDE configuration panel

Controller

The controller is the administration tool that lets you view the present state of your NXT Brick or 
Bricks in terms of availability, memory, and power. Moreover, it’s the trigger for downloading to and 
running programs or pieces of programs on the Brick (Figure 2-12). 

Figure 2-12. LEGO MINDSTORMS NXT Software IDE controller

After the program has been compiled, you will download it to the Brick, as shown in Figure 2-13. The 
compiled assembler code is transferred to the Brick’s memory.

Figure 2-13. LEGO MINDSTORMS NXT Software IDE downloading programs



CH AP T E R  2  ■  A  3 , 0 0 0 - F OO T  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS 39

Robo Center

The Robo Center is not directly connected to programming but serves as a bridge to the NXT community. 
Here you find not only onscreen building instructions for four advanced robots but also a portal to the 
LEGO.com MINDSTORMS community NXT web site where you can get challenges and download 
NXT-G–related material such as sample programs, sound files, and additional building instructions. 
Figure 2-14 shows the Robo Center.

Figure 2-14. LEGO MINDSTORMS NXT Software IDE Robo Center

Example Program Snippets
To illustrate all these concepts, let’s have a look at some typical robot programming tasks and how 
they are implemented in a NXT-G program. I keep them very simple to prevent implementation 
details hiding the big picture. Note that you will see complete programs in the following chapters.

Driving

Assume that you have a four-wheeled robot where the two rear wheels are each driven by a motor 
(Figure 2-15). 



40 CH AP T E R  2  ■  A  3 , 0 0 0 - F O OT  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS

Figure 2-15. The four-wheeled robot3

You want the robot to drive straight. Since the robot will drive until you manually switch it off, 
you will begin with attaching a loop block to the starting point of each NXT program, configuring it 
to run forever. Inside this loop you place the move block for driving straight (Figure 2-16).

Figure 2-16. NXT-G driving straight 

Stopping

How do you stop the robot using NXT-G programming? Simply enough: you use a move block config-
ured to stop the two rear motors (Figure 2-17).

3.  Building instructions for this robot, called Silberpfeil, can be found on my web site at http://
mynxt.matthiaspaulscholz.eu.



CH AP T E R  2  ■  A  3 , 0 0 0 - F OO T  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS 41

Figure 2-17. NXT-G stopping motors

Rotating

To rotate, you drag a move block onto the beam that drives the motors 45 degrees (Figure 2-18). 

Figure 2-18. NXT-G rotating

Accessing and Handling Sensor Values

Assume that you have an ultrasonic sensor attached to the Brick and you want to detect objects with 
it that are closer than 50 inches. For this, you use a loop block, configuring it to run a move block 
until the ultrasonic sensor triggers an according detection event (Figure 2-19).



42 CH AP T E R  2  ■  A  3 , 0 0 0 - F O OT  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS

Figure 2-19. NXT-G ultrasonic detection

Playing Sounds

Playing a sound with NXT-G is easy. A particular type of block, the sound block, allows not only for 
playing tones but also for playing complete sound files saved in the NXT-proprietary .rso file format 
(Figure 2-20).

Figure 2-20. NXT-G playing sounds

RobotC
RobotC is a programming environment based on the popular functional programming language C. 
It was developed by the CMU Robotics Academy, an institute of the Carnegie Mellon University in 
Pittsburgh, Pennsylvania, that is “committed to using robotics to excite children about science and 
technology and to help create a more technologically literate society,” as its web site states. Figure 2-21 
shows RobotC.



CH AP T E R  2  ■  A  3 , 0 0 0 - F OO T  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS 43

Figure 2-21. RobotC

While a 30-day evaluation version can be downloaded for free, RobotC is a commercially avail-
able product, with a price of around $50. Presently, RobotC is available for Windows XP only but 
plans for Mac support have been announced already by the Robotics Academy.

An interesting point with RobotC is that it is cross-platform, supporting not only the NXT but 
also its MINDSTORMS predecessor, the RCX, and the popular VEX, a robotics kit produced by Inno-
vation First, Inc. It is claimed that programs written for one of these platforms are portable to others 
with only little change. This is made possible by a Virtual Machine (VM), a layer that provides the 
glue between the code laid down in the RobotC language and the hardware it runs on, and that glue 
is necessarily different on each target platform. Hence, RobotC programs are run by an interpreter 
that does not operate on the native instruction set of the robotics controller but on the instructions 
of the VM (these VM instructions are called bytecode). Other high-level programming languages such 
as Java and C# are based upon this very concept. Yet, it is different from the one the original C language 
and NXT-G are following.

While performance often is a crucial point for interpreted languages, RobotC prides itself on 
providing better performance than NXT-G on the Brick. This is due to the use of a particular RobotC-
specific firmware that differs from the official NXT one. Hence, before RobotC programs can be run, 
the official firmware has to be replaced by RobotC’s on the Brick. 



44 CH AP T E R  2  ■  A  3 , 0 0 0 - F O OT  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS

There are other features that make RobotC attractive to programmers such as real-time debugging 
(which is pretty difficult with NXT-G), an optimizing bytecode compiler, and support for almost all 
concepts of the powerful C language.

IDE
The IDE of RobotC is rather clear, consisting of a menu bar and an editor (Figure 2-22).

Figure 2-22. RobotC’s IDE



CH AP T E R  2  ■  A  3 , 0 0 0 - F OO T  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS 45

Menu Bar

The menu bar is the place where you can start commands such as opening or saving programs, 
selecting the target platform, connecting to the NXT Brick, downloading RobotC’s firmware, and 
compiling and downloading programs (Figure 2-23). 

Figure 2-23. Downloading the firmware to the Brick

It’s also from here where you start the debugger (Figure 2-24).



46 CH AP T E R  2  ■  A  3 , 0 0 0 - F O OT  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS

Figure 2-24. RobotC’s real-time debugger

Editor

The editor is separated into two parts: a tree that lists language elements, and the actual editing 
section. The elements in the tree can be dragged into the editing section, thus helping the 
programmer easily gain an overview of the language elements and save on typing. The editing 
section is the place where you actually write your program code. It features syntax highlighting, code 
completion, and intelligent indenting.

Example Program Snippets
You will now implement the simple sample program snippets with RobotC that you developed with 
NXT-G in the previous section.

Driving

Again, you need an infinite loop for the endless execution of the program. The two motors are run by 
two separate commands:

// endless loop
while(true)   {
       // run motors B and C at a power level of 75%
       motor[motorB] = 75;
       motor[motorC] = 75;
}



CH AP T E R  2  ■  A  3 , 0 0 0 - F OO T  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS 47

Stopping

You stop the motors in a similar way to running them—just set the power to 0:

// stop motors B and C
motor[motorB] = 0;
motor[motorC] = 0;

Rotating

Run motor A by reading the variable nMotorEncoder that is the degrees counter:

// rotate motor by 45 degrees
nMotorEncoder[motorA] = 0;
while(nMotorEncoder[motorA] < 45 ) {
   motor[motorA] = 75;
}
motor[motorA] = 0;

Accessing and Handling Sensor Values

You need a loop for executing some statements until the ultrasonic sensor detects an object nearer 
than 50 inches:

const tSensors ultrasonicSensor = (tSensors) S1;
do {
     // perform some statements
     ...
     // do so while ultrasonic sensor does not detect 
     // an object nearer than 50 inches
} while(SensorValue(ultrasonicSensor) > 50);

Playing Sounds

Play a tone by using the PlayTone convenience method predefined by RobotC:

// play a tone (frequency 500, duration 50 * 10 ms) 
PlayTone(500, 50);

NXC
Not eXactly C (NXC) is a C-style language that can be used to program the NXT Brick. Programs 
written in NXC are compiled to run on the original LEGO NXT firmware.

NXC is built on top of the assembler language NBC that was the first language to appear on the 
scene next to the LEGO MINDSTORMS NXT Software. Its first beta release was published by MCP 
member John Hansen just one day after the first stage of the nondisclosure agreement expired for 
the beta-test team on May 1, 2006. Hansen was already rather well-known as a coauthor with David 
Baum of the popular Not Quite C (NQC), a C-style language that was widely used for programming 
the NXT’s predecessor, the RCX.

NXC is published under the Mozilla Public License (MPL), which means among other things 
that you can download and use it for free (http://bricxcc.sourceforge.net/nxc). Hansen has also 
upgraded the IDE, called Bricx Command Center (BricxCC), for NQC and other programming 
languages for development with NBC. It’s available at http://sourceforge.net/projects/bricxcc. 

Let’s have a look at it now.



48 CH AP T E R  2  ■  A  3 , 0 0 0 - F O OT  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS

IDE
The Bricx Command Center runs on Microsoft Windows only and is presently available in 
version 3.3 (Figure 2-25).

Figure 2-25. The Bricx Command Center

The IDE comprises the three classical components: 

• A menu bar

• A toolbar providing buttons for the most frequently used features of the menu bar

• An editor

Menu Bar

BrickCC’s menu bar provides support for features such as the usual file operations, enhanced 
editing commands, and compiling and downloading programs to the Brick. The Tools menu that 
lists a lot of useful tools for the Brick is shown in Figure 2-26.



CH AP T E R  2  ■  A  3 , 0 0 0 - F OO T  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS 49

Figure 2-26. BricxCC’s Tools menu

Another menu item worth having a look at is Preferences, where you can play around with a 
multitude of different configuration settings (Figure 2-27).

Figure 2-27. BricxCC’s Preferences menu



50 CH AP T E R  2  ■  A  3 , 0 0 0 - F O OT  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS

Editor

The editor is separated into two parts: a tree that lists language elements, and the actual editing 
section (Figure 2-28).

Figure 2-28. BricxCC’s editor

The editor provides high-level support for creating NXC programs with most of the features you 
would expect in a modern IDE.

Example Program Snippets
To get a feeling of how an NXC program looks, let’s implement the sample program snippets you 
developed with NXT-G and RobotC in the previous sections. 

Driving

To drive forward, you run the two motors B and C synchronized. The synchronization is simply done 
by using the OnFwdSync function with OUT_BC as the first argument:

// run motors B and C synchronized on a power level of 75%
// the third argument 100 means that both motors run in the same direction
OnFwdSync (OUT_BC, 75, 100);



CH AP T E R  2  ■  A  3 , 0 0 0 - F OO T  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS 51

Stopping

To stop, use the Off function:

// stop motors B and C
Off(Out_BC);

Rotating

To rotate motor A, you use the RotateMotor function:

// rotate motor by 90 degrees
RotateMotor (Out_A,75,90);

Playing Sounds

To play sounds, use the following command:

// play a tone of frequency 500 and duration 5000 ms
PlayTone (500, 5000);

pbLua
pbLua is a new text-based programming language for the NXT developed in 2006 by Ralph Hempel, 
one of the renowned pioneers of the LEGO MINDSTORMS community. Hempel is a firmware 
expert, one of the four MUPpets, and the author of a number of books on the NXT’s predecessors 
(Figure 2-29).

Figure 2-29. pbLua

pbLua is based on Lua, a lightweight programming language that was developed by a team at 
the Pontifical Catholic University in Rio de Janeiro. It was originally designed for extending applica-
tions but today also serves as a general-purpose, stand-alone language. Like RobotC, Lua (and thus 
pbLua) is not compiled into native code that can be directly executed by the operating system. 
Instead, it is translated into bytecode that is interpreted by an OS-specific VM.

Since Lua relies more on providing metamechanisms for extending the language semantics 
than on bringing along a broad set of language features, its core is kept rather small and lightweight 
and has a reputation for being very fast. Along with its automatic garbage collection and dynamic 
typing, it’s not only ideal for scripting and rapid prototyping but very well-suited for being ported to 
embedded systems.

At the time of this writing, pbLua was available for free as a beta 3 version from Hempel’s site, 
http://www.hempeldesigngroup.com/lego/pbLua. 

pbLua does not come with its own programming environment, although there is a Lua plug-in 
for Eclipse. Appendix A deals with how to use pbLua and the plug-in.



52 CH AP T E R  2  ■  A  3 , 0 0 0 - F O OT  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS

Example Program Snippets
Lua is based on the concept of associative arrays, also known as lookup tables. Functions and data 
are kept in maps and may be accessed using a key of any type. These maps can be dynamically 
created, changed, and iterated.4 For instance, a typical call to a function would look like this:

nxt.OutputSetSpeed(3,0,0,0)

where nxt is a lookup table and OutputSetSpeed the key of a function. In this case the nxt table and 
its functions come with pbLua already, but you are free to extend it, of course.

Driving

To run the motors you access the according function keys in the (predefined) nxt table:

-- configure motor B and C to run in "brake" mode
nxt.OutputSetMode(2,2) 
nxt.OutputSetMode(3,2) 
-- set the power of the motors to 75 %
-- 32 means "run mode"
nxt.outputSetSpeed(2, 32, 75, 0)
nxt.outputSetSpeed(3, 32, 75, 0)

Stopping

To stop the motors you set the power to 0%:

-- set the power of the motors to 0 %
nxt.outputSetSpeed(2, 0, 0)
nxt.outputSetSpeed(3, 0, 0)

Rotating

You need to enable regulation to make use of the tachometer feedback built into the NXT motor and 
set the tachometer to the desired value of degrees:

-- enable regulation for motor A
nxt.OutputEnableRegulation(1,1)
-- rotate 90 degrees
nxt.OutputSetSpeed(1,32,75,0)
nxt.OutputSetTachoLimit(1,90)

leJOS NXJ
leJOS, currently in version 3.0, is a tiny open source Java-based operating system that was originally 
designed for the NXT’s predecessor, the RCX, and was and still is very popular for programming with 
Java. With the appearance of the NXT, the leJOS community made efforts to port leJOS to run on the 
NXT. An alpha release of leJOS for the NXT, called leJOS NXJ, can be downloaded at http://www.
lejos.org. There is a strong presumption that LeJOS NXJ will soon develop into a mature and 
productive platform for the NXT (Figure 2-30).

4. You can even use maps as values in other maps, thus creating a hierarchy of lookup tables.



CH AP T E R  2  ■  A  3 , 0 0 0 - F OO T  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS 53

Figure 2-30. leJOS NXJ

leJOS NXJ consists mainly of three parts: 

• A VM for the execution of Java bytecode

• An API for NXT programming on top of this VM

• Additional software tools

It does not provide its own IDE but endorses the usage of one of the Java IDEs already estab-
lished in the market. For use of leJOS NXJ with Eclipse, see Appendix A.

Example Program Snippets
Let’s take a look now at the programming tasks you have encountered already and how they are 
solved with leJOS NXT.

Driving

To drive, you simply set the speed and call the forward method on the motors in question. Note that 
with leJOS NXJ, speed denotes degrees per second; the maximum value is 900:

// switch on speed regulation
Motor.B.regulateSpeed(true);
Motor.C.regulateSpeed(true);
// set speed
Motor.B.setSpeed(600);
Motor.C.setSpeed(600);
// run motors 
Motor.B.forward();
Motor.C.forward();

Stopping

Stopping is very simple; just call the stop method on the motors in question:

// stop motors
Motor.B.stop();
Motor.C.stop();

Rotating

To rotate motor A by 90 degrees, use the following command:

// rotate
Motor.A.rotateTo(90);



54 CH AP T E R  2  ■  A  3 , 0 0 0 - F O OT  L O OK  AT  N X T  P R O G R AM M IN G  E N V I R O N M E N TS

Accessing and Handling Sensor Values

To access and handle sensor values, first configure the sensor in question and then run a loop that 
checks the sensor in each cycle: 

// configure the touch sensor on input port 1
TouchSensor touchSensor = new TouchSensor(Port.S1);
// do something until touch sensor gets pressed 
while(!touchSensor.isPressed()) {
       // do something here
}

Playing Sounds

Playing a sound with leJOS NXJ is very easy:

// play a sound of frequency 500 that takes half a second
Sound.playTone(500, 500);

Summary
In this chapter, I introduced some programming environments that enable you to develop and run 
programs directly on the NXT robot. You should now have some insight on the basic concepts and 
features of the LEGO MINDSTORMS NXT Software, RobotC, NXC, pbLua, and leJOS NXJ and rate 
their potential use for you.

In the next chapter, you will use the programming environments introduced in this chapter to 
implement NXT programs for Leonardo da Vinci’s invention of the armored car. 



55

■ ■ ■

C H A P T E R  3

The Armored Car 

I will make covered vehicles, safe and unassailable, which will penetrate the enemy and their
artillery, and there is no host of armed men so great that they would not break through it.
And behind these the infantry will be able to follow, quite uninjured and unimpeded.

—Leonardo da Vinci

In this chapter, you will have a closer look at the first of Leonardo’s prominent inventions covered 
in this book. You will create an NXT-driven LEGO robot and program it with the environments intro-
duced in Chapter 2. 

In the end, you will not only have gained insight into one of Leonardo’s most thrilling designs 
and the hazards of engineering in the Renaissance, but also an understanding of different aspects of 
building around the NXT and the challenges and possible solutions of robot programming.

Historical Background
Leonardo da Vinci drew his sketch of the armored car—part of the Manuscript Popham, located 
today in the Biblioteca Reale in Torino, Italy—sometime around 1485 in Milan. It’s likely that it was 
presented to the Duke of Milan, and thus appears neat and well laid out (Figure 3-1).

Its carriage was designed to support many light cannons, set up in a 360-degree firing range. For 
propulsion of the considerable weight, he designed a fancy, geared mechanism with cranks that could be 
pulled by men or draught animals located inside the carriage. A conical cover made of wood was 
meant to protect the crew. On top of the whole structure, a sighting turret granted the advantage of 
having a harbored outlook to the battlefield on a mobile platform.

Like the other engineers and artists during the Renaissance, Leonardo was eager to adopt 
antiquated ideas, using his inspiration for inventions and enhancements of classical concepts. For 
example, the armored car adopts the concept of the chariot and the “war tortoise,” a rectangular 
formation of soldiers on the battlefield holding their shields on the side open to attack. When the 
men in the middle held up their shields above them, the resulting structure was almost impenetrable 
to the enemy. The small gaps between the shields allowed room for lances or spears.

The tremendous military technology improvements of the 15th century spawned new challenges 
to contemporary war strategy. With the appearance of fire weapons on the battle fields, usefulness 
of traditional tactics, weaponry, and fortress architecture rapidly decreased. Strategies became 
mandatory to integrate the firearms’ ever-growing and already immense potential into battle oper-
ations and to cope with the threat they imposed both on troops and fortresses.



56 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-1. Leonardo’s drawing of the armored car

This need became even more urgent as Italy had become Europe’s battleground by the end of 
the 15th century. The factors that had made possible the cultural explosion of the Renaissance in 
Northern Italy—wealth, peace, being in the heart of European trade, natural resources—also made 
it a target in the European turf war that shredded the Italian political landscape until the 19th 
century. 

Since 1490, two generations of Italians were faced with continuous war, as the kings of France, 
England, and Spain, the Pope, and the emperor of the Holy Roman Empire tried to establish control 
on the “fulcrum of Europe” with legions of mercenaries highly trained for killing.

In this atmosphere of imminent war, engineers and artists like Leonardo spent a lot of their 
imaginative power for military devices, and their employers were willing to spend enormous sums 
of money for their real or imaginary military needs.

Though an entrancing vision, Leonardo’s armored car was technically unrealizable, according 
to all authorities, and certainly has never been built. The whole device would have been much too 
heavy to be moved over an uneven battleground. Any draught animal would have been uncontrol-
lable in the narrow and dark interior once the cannons started firing, and there’s even a design flaw 
in the drawing: the arrangement of the gears would have turned the front and rear wheels in different 
directions (Figure 3-2).

■Note  There is some presumption that the “design flaw” in Leonardo’s armored car may have been intentional. 
It’s likely that Leonardo took that measure in order to keep his designs from being stolen. 



C HA P TE R  3  ■  T H E  AR M OR E D CAR  57

Figure 3-2. Detail of the armored car’s gearing mechanism

Special Challenges
When building the armored car, there are a couple challenges to overcome: how to interpret Leonardo’s 
sketches, and how to build the gearing mechanism with LEGO.

Interpreting the Design
When venturing the task of building any of Leonardo’s inventions with LEGO, there’s always the 
particular problem of interpreting the drawings appropriately. Leonardo’s figures were mainly 
meant as mere sketches for internal work, far from being well-formed blueprints or building instruc-
tions comprehensible for other people. 

This is the case with the sketch of the armored car; many of the details are left to the speculation 
of the beholder. Yet, we are lucky because modern computer-aided design (CAD) tools have been 
able to create 3D computer models of many of Leonardo’s inventions, although the results still require 
a good deal of interpretation. But they are still much better than trying to refer to the often obscure 
and fragmentary originals.

The comprehensive Leonardo3 web site (http://www.leonardo3.net) with a wealth of informa-
tion on Leonardo and his inventions includes many computer-generated images. Also, particularly 
helpful to me is the book Leonardo’s Machines: Da Vinci’s Inventions Revealed by Domenico 
Laurenza, Mario Tadei, and Edoardo Zanon (David & Charles Publishers, 2006), a magnificent folio 
with an abundance of 3D CAD images, exploded views, and background information.



58 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Building the Gearing Mechanism
How will you mimic the gearing mechanism with LEGO? How will you integrate the NXT motors in 
the propulsion chain? Figures 3-3 and 3-4 show a possible solution.

Figure 3-3. The armored car’s gearing mechanism rebuilt with LEGO



C HA P TE R  3  ■  T H E  AR M OR E D CAR  59

Figure 3-4. Attachment of a motor to the axis that drives the gearing 

Building the Armored Car
Figure 3-5 shows the final built armored car. Note that the upper ends of the beams that form the 
cover are attached with strings to the main axis of the car to enhance the stability.



60 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-5. The armored car

The following images (Figures 3-6 through 3-41) provide step-by-step instructions on how to 
build the armored car.



C HA P TE R  3  ■  T H E  AR M OR E D CAR  61

Figure 3-6. Building the armored car: step 1



62 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-7. Building the armored car: step 2



C HA P TE R  3  ■  T H E  AR M OR E D CAR  63

Figure 3-8. Building the armored car: steps 3 (rotate model) and 4



64 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-9. Building the armored car: step 5



C HA P TE R  3  ■  T H E  AR M OR E D CAR  65

Figure 3-10. Building the armored car: step 6



66 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-11. Building the armored car: step 7



C HA P TE R  3  ■  T H E  AR M OR E D CAR  67

Figure 3-12. Building the armored car: steps 8 (rotate model) and 9



68 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-13. Building the armored car: steps 10 (rotate model) and 11



C HA P TE R  3  ■  T H E  AR M OR E D CAR  69

Figure 3-14. Building the armored car: step 12



70 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-15. Building the armored car: step 13



C HA P TE R  3  ■  T H E  AR M OR E D CAR  71

Figure 3-16. Building the armored car: step 14



72 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-17. Building the armored car: step 15



C HA P TE R  3  ■  T H E  AR M OR E D CAR  73

Figure 3-18. Building the armored car: steps 16 (rotate model) and 17



74 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-19. Building the armored car: step 18



C HA P TE R  3  ■  T H E  AR M OR E D CAR  75

Figure 3-20. Building the armored car: steps 19 (rotate model) and 20



76 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-21. Building the armored car: step 21



C HA P TE R  3  ■  T H E  AR M OR E D CAR  77

Figure 3-22. Building the armored car: step 22



78 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-23. Building the armored car: step 23



C HA P TE R  3  ■  T H E  AR M OR E D CAR  79

Figure 3-24. Building the armored car: steps 24 (rotate model) and 25



80 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-25. Building the armored car: step 26



C HA P TE R  3  ■  T H E  AR M OR E D CAR  81

Figure 3-26. Building the armored car: step 27



82 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-27. Building the armored car: step 28



C HA P TE R  3  ■  T H E  AR M OR E D CAR  83

Figure 3-28. Building the armored car: step 29



84 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-29. Building the armored car: step 30



C HA P TE R  3  ■  T H E  AR M OR E D CAR  85

Figure 3-30. Building the armored car: step 31



86 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-31. Building the armored car: steps 32 (rotate model) and 33



C HA P TE R  3  ■  T H E  AR M OR E D CAR  87

Figure 3-32. Building the armored car: step 34



88 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-33. Building the armored car: step 35



C HA P TE R  3  ■  T H E  AR M OR E D CAR  89

Figure 3-34. Building the armored car: step 36



90 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-35. Building the armored car: steps 37 (rotate model) and 38



C HA P TE R  3  ■  T H E  AR M OR E D CAR  91

Figure 3-36. Building the armored car: step 39



92 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-37. Building the armored car: step 40



C HA P TE R  3  ■  T H E  AR M OR E D CAR  93

Figure 3-38. Building the armored car: step 41



94 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-39. Building the armored car: step 42



C HA P TE R  3  ■  T H E  AR M OR E D CAR  95

Figure 3-40. Building the armored car: step 43



96 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-41. Building the armored car: step 44



C HA P TE R  3  ■  T H E  AR M OR E D CAR  97

To complete the model with cannons and the cover, just add the remaining five cover substruc-
tures and attach the cannons appropriately (Figure 3-5). Figure 3-42 shows the bills of material.

Figure 3-42. The armored car bills of material

Programming the Armored Car
Since by design the armored car has rather limited capabilities for movement, you will create a rather 
simple program for it. This program will give you a good initial grip on the different programming 
environments.

This section shows you how to program the armored car to simply drive forward, using each of 
the different programming tools discussed in Chapter 2. Figure 3-43 illustrates the general flow of the 
program. 



98 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Figure 3-43. The armored car program

LEGO MINDSTORMS NXT Software
Let’s start with programming the robot with NXT-G. Since the armored car drives around until you 
manually switch it off, start with attaching a loop block to the starting point of each NXT program, 
configuring it to run forever (Figure 3-44).

Figure 3-44. The global forever loop block

Inside of this loop, place a move block for driving straight. Note that due to the particular tech-
nical setup, the two motors have to spin in opposite directions. As the complete logic is contained in 
a forever loop, the robot will drive straight until you switch it off. Figure 3-45 displays the complete 
program.



C HA P TE R  3  ■  T H E  AR M OR E D CAR  99

Figure 3-45. Driving straight with a move block

RobotC
RobotC programs are organized in units called tasks that represent executable pieces of code. Tasks 
may call other tasks that can be thought of as subprograms.

Yet, for simplicity again, we will not call subtasks, but define the simple top-level task main:

task main() {

}

You want the motors B and C to run synchronized:

task main() {

   // motor B and C should run synchronized
   nSyncedMotors = synchBC;
   // motor C has to rotate in the opposite direction
   nSyncedTurnRatio = -100;

}

Again, you need an infinite loop for the endless execution of the program: 

task main() {

   . . .
nSyncedTurnRatio = -100;

   // endless loop
   while(true) {

   };
}

When you run a motor, the other motor will run in the opposite direction because they are 
synchronized accordingly:



100 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

task main() {

   . . .
   while(true) {

      // run motors B at a power level of 75%
      // motor C spins synchronized in the opposite direction
      motor[motorB] = 75;
   };
}

That’s it! Here’s the complete RobotC program for the armored car:

task main() {
   // motor B and C should run synchronized
   nSyncedMotors = synchBC;
   // motor C has to rotate in the opposite direction
   nSyncedTurnRatio = -100;

   // endless loop
   while(true) {

       // run motors B and C at a power level of 75%
       // motor C spins in the opposite direction
       motor[motorB] = 75;

   }

}

NXC
Let’s turn to programming the armored car with NXC now. 

Tasks are the top-level elements of NXC programs also:

// main
task main() {

}

You have to include the NXC header to use the particular NXC functions:

// enable NXC
#include "NXCDefs.h"

// main
task main() {

}

Again, you need an infinite loop for the endless execution of the program:

. . .
task main() {



C HA P TE R  3  ■  T H E  AR M OR E D CAR  101

   // endless loop
   while(true) {

   }

}

Finally, use the OnFwdSyn function to run the two motors B and C synchronized:

. . .
task main() {

   // endless loop
   while(true) {

           // run motors B and C synchronized on a power level of 75%
           // the third argument 100 means that both motors 
           // run in the opposite direction
           OnFwdSync (OUT_BC, 75, 100);

   }

}

The following is the complete NXC program for the armored car: 

// enable NXC
#include "NXCDefs.h"

// main
task main() {

     // endless loop
     while (true) {
     
           // run motors B and C synchronized on a power level of 75%
           // the third argument 100 means that both motors
           // run in the opposite direction
           OnFwdSync (OUT_BC, 75, 100);

     }
}

pbLua
Using pbLua, you will define the ArmoredCar function and configure the motors B and C:

-- function ArmoredCar
function ArmoredCar()

    -- configure motors B and C to run in "brake" mode
    nxt.OutputSetMode(2,2)
    nxt.OutputSetMode(3,2)

end



102 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

Next, run the infinite loop for the endless execution of the program:

. . .
function ArmoredCar()

    -- configure motors B and C to run in "brake" mode
    nxt.OutputSetMode(2,2)
    nxt.OutputSetMode(3,2)

    -- loop forever
    while 1 do
    
    end

end

Run the two motors on a power level of 75%:

. . .
function ArmoredCar()

    . . .
    while 1 do

      -- set the power of the motors to 75%
      -- 32 means "run mode"
      nxt.outputSetSpeed(2, 32, 75, 0)
      nxt.outputSetSpeed(3, 32, -75, 0)

    end

end

Finally, run the ArmoredCar function:

. . .
function ArmoredCar()

    . . .

end

-- run the ArmoredCar function 
ArmoredCar()

Done! The complete pbLua program for the armored car is as follows:

-- function ArmoredCar
function ArmoredCar()
    -- configure motors B and C to run in "brake" mode
    nxt.OutputSetMode(2,2)
    nxt.OutputSetMode(3,2)
    
    -- loop forever
    while(1) do



C HA P TE R  3  ■  T H E  AR M OR E D CAR  103

      -- set the power of the motors to 75%
      -- 32 means "run mode"
      nxt.outputSetSpeed(2, 32, 75, 0)
      nxt.outputSetSpeed(3, 32, -75, 0)
    
    end
end

-- run the ArmoredCar function 
ArmoredCar()

leJOS NXJ
Java programs are organized in components called classes. The entry point for execution of a stand-
alone executable class is a main method:

package org.nxtdavinci.armoredcar;

public class ArmoredCar  {

   public static void main(String [] args) throws Exception {
   }
}

To use parts of the leJOS NXJ API, you need to import the according packages:

package org.nxtdavinci.armoredcar;

import lejos.nxt.*;

public class ArmoredCar  {

   public static void main(String [] args) throws Exception {
   }
}

Set up speed regulation for the motors B and C and set the speed to 600 rpm, which is two-thirds 
of the maximum value:

. . .
public class ArmoredCar  {

   public static void main(String [] args) throws Exception {

      // switch on speed regulation
      Motor.B.regulateSpeed(true);
      Motor.C.regulateSpeed(true);

      // set the speed of the motors to 600 rpm
      Motor.B.setSpeed(600);
      Motor.C.setSpeed(600);

   }

}



104 CH AP T E R  3  ■  T HE  AR M O R E D  C AR  

The infinite loop for forever running the two drive motors looks like this:

. . .
public class ArmoredCar  {

   public static void main(String [] args) throws Exception {

      . . .
      Motor.C.setSpeed(600);

      // loop forever
      while(true) {

      }

   }

}

Finally, run the two motors in opposite directions:

. . .
public class ArmoredCar  {

   public static void main(String [] args) throws Exception {

      . . .
      // loop forever
      while(true) {

         // run the motors in opposite directions
         Motor.B.forward();
         Motor.C.backward();

      }

   }

}

Here’s the complete leJOS NXJ program for the armored car:

package org.nxtdavinci.armoredcar;

import lejos.nxt.*;

public class ArmoredCar {

   public static void main(String[] args) {

      // switch on speed regulation
      Motor.B.regulateSpeed(true);
      Motor.C.regulateSpeed(true);



C HA P TE R  3  ■  T H E  AR M OR E D CAR  105

      // set the speed of the motors to 600 rpm
      Motor.B.setSpeed(600);
      Motor.C.setSpeed(600);

      // loop forever
      while(true) {

         // run the motors in opposite directions

         Motor.B.forward();
         Motor.C.backward();

      }
   }

}

Summary
In this chapter, you built your first LEGO NXT implementation of an invention of Leonardo da Vinci, 
his famous armored car, and programmed it with five different contemporary environments. Building 
this model should have given you a good idea of what it’s like to build a mechanism with LEGO, in 
particular, facing the challenges, knowing how to solve them, and integrating a controlling unit like the 
NXT into an original design. Furthermore, you learned basic yet real approaches using the different NXT 
programming environments. You are able now to write simple programs of your own with these 
environments.

In the next chapter, you will deepen your knowledge with another invention of Leonardo’s that 
is also related to military aspects: the catapult. You will also use the first type of input device, the 
touch sensor.



107

■ ■ ■

C H A P T E R  4

The Catapult

Simplicity is the ultimate sophistication.

—Leonardo da Vinci

In this chapter, you will build Leonardo’s catapult. Although it may seem to be a rather traditional 
military weapon, you will see that Leonardo didn’t deal in vain with it and added some ingenious 
and unique details. You will learn how to use the motors, the touch sensor, and the different program-
ming environments.

Historical Background
Leonardo made more than one draft for different kinds of catapults. The one in question hails from 
the time when he moved to Milan at the beginning of the 1580s (Figure 4-1). It’s not unlikely that like 
the armored car, the sketch of the catapult was attached to his letter of application to Duke Ludovico.

Figure 4-1. Leonardo’s drawing of the catapult



108 CH AP T E R  4  ■  T HE  CA TA PU L T

Today, the sketch is part of the Codex Atlanticus preserved in the Biblioteca Ambrosiana in 
Milan. It reveals to us a fancy design of the core component of a catapult: the device that generates, 
stores and sets free the mechanical energy that propels the hurling part. Principally, there are two 
concepts for doing so: creating the power by torsion of ropes or wooden arms (an onager), or doing 
so using the gravity of a falling weight (a design known as a trebuchet).

Leonardo’s catapult is of the onager type. Nevertheless it’s of singular brilliance because it uses 
a double leaf spring instead of the classical straight arm. With this, the catapult was not only much 
more compact but also able to convey a much higher level of mechanical energy to the hurling arm, 
resulting in a greater range and enhanced penetrating power. The released power must have been so 
huge that the catapult had to be fixed to the ground with ropes and blocks. In fact, Leonardo was not 
so much interested in the catapult itself but in the spring mechanism and the basic aspects of gener-
ating power with these kinds of mechanical devices.

■ Note  Most likely, some spring configurations were contained in Leonardo’s “Treatise on Machine Elements,” 
apparently a milestone in the theoretical research on mechanical elements such as wheels, gears, screws, and 
springs. Unfortunately, this treatise has been lost, so we know of it by reports only.

When we think of military capabilities, we tend to associate fire weapons with more modern 
times and classical artillery with earlier eras. But we must not forget that the adoption of and transi-
tion to new technologies is always a gradual process, in particular in epochs that have not seen such 
a high frequency of change as the days we live in now. Hence, classical, or we might even say antique, 
weapons used in medieval warfare for a long time did not vanish altogether from Renaissance military 
strategies. Instead, they were still in use after combustion-powered arms were invented.

The catapult was a distance weapon already used by Alexander’s troops during the conquest of 
the Persian realm. It was deployed extensively in medieval warfare, which consisted to a large degree 
of sieges and engagement of fortified military installations. Here, the catapult was at its best, using 
its particular strengths to stand up against the firearms of the Renaissance age. First, its firing mechanism 
was rather simple; so, in contrast to a cannon, it did not require highly trained (and thus expensive) 
specialists. Next, catapults had a high firing rate as well as a high firing range, in particular compared 
to the very slow field guns at the end of the 16th century.

■Note  The catapults used at the siege of Lisbon in 1147 are reported to have been capable of throwing a 60 kilogram 
stone every 15 seconds over a distance of up to 300 feet.

Catapults didn’t require transportation over large distances into enemy space but could be 
constructed on site since they were mainly built of material—wood and ropes—that could be 
acquired locally, a considerable advantage against the clumsy fire weaponry in times of almost 
nonexistent or at least very bad streets.1

In addition to this, catapults were very versatile weapons that could hurl a variety of projectiles 
against the enemy, including stones, arrows, stink pots, or incendiary composites—even beehives. 
Indeed, catapults were the first weapons to be used for biological warfare since it was not uncommon to 
fire carcasses of diseased animals or human beings that had perished in epidemics into the besieged 
fortress. We know that on some occasions, even living captives were hurled as a means to demoralize 
the defenders.

1. Consequently, Leonardo invented a cannon that could be disassembled for easier transportation and then 
reassembled on the battlefield.



C H AP TE R  4  ■  TH E  C AT AP U L T 109

Apparently, with the evolution of modern artillery, catapults lost their importance in warfare 
and eventually vanished from the battlefields in the 16th century. Yet for Leonardo and his fellow 
engineers, improving these sorts of weapons was still a worthwhile occupation and of interest to 
their potential employers.

Hardware Challenges
It’s easy to see that there are two major components of the catapult that impose particular difficul-
ties when building them with LEGO: the double leaf spring and the crank mechanism for loading 
and firing.

The Double Leaf Spring
Building elastic parts with LEGO is not trivial, especially when they need to have a curved shape. I 
solve this by using a combination of short straight and bent beams, thus creating a sufficiently round 
structure that is stable and elastic on one hand and nevertheless capable of storing enough kinetic 
energy to provide a sufficient amount of thrust to the catapult’s arm (Figure 4-2).

Figure 4-2. The double leaf spring

The Crank Mechanism
The mechanism that drives the spring has to serve two purposes: first, it is required to drive the spring’s 
gear wheel to bring the catapult’s arm into loading position and close each leaf at the same time, 



110 CH AP T E R  4  ■  T HE  CA TA PU L T

thus building up kinetic energy for firing. Second, it needs to allow for release of the wheel in a flash 
so that the power stored in the leaves is set free in an instant.

I provide a solution that meets these two requirements by setting up a worm gear on the bottom 
of the great gear wheel. A worm gear is able to sustain the large force that acts upon the gear wheel’s 
teeth and to prevent the wheel from slipping or turning back. On the other hand, it does not allow for 
a quick release of the wheel, so you have to add an additional degree of freedom to the whole worm 
gear assembly. The complete axle can be lowered to let the gear wheel, the leaf spring, and the attached 
arm spin freely (Figure 4-3).

Figure 4-3. The crank mechanism



C H AP TE R  4  ■  TH E  C AT AP U L T 111

Building the Catapult
Figure 4-4 shows the completed catapult robot. Now you will build the catapult and integrate the 
NXT Brick as a controlling unit. 

Figure 4-4. The completed catapult robot

The following images (Figures 4-5 through 4-40) show step-by-step instructions on how to build 
the catapult.



112 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-5. Building the catapult: step 1



C H AP TE R  4  ■  TH E  C AT AP U L T 113

Figure 4-6. Building the catapult: steps 2 (rotate model) and 3



114 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-7. Building the catapult: step 4



C H AP TE R  4  ■  TH E  C AT AP U L T 115

Figure 4-8. Building the catapult: steps 5 (rotate model) and 6



116 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-9. Building the catapult: steps 7 (rotate model) and 8



C H AP TE R  4  ■  TH E  C AT AP U L T 117

Figure 4-10. Building the catapult: steps 9



118 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-11. Building the catapult: steps 10 (rotate model) and 11



C H AP TE R  4  ■  TH E  C AT AP U L T 119

Figure 4-12. Building the catapult: step 12



120 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-13. Building the catapult: step 13



C H AP TE R  4  ■  TH E  C AT AP U L T 121

Figure 4-14. Building the catapult: step 14



122 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-15. Building the catapult: step 15



C H AP TE R  4  ■  TH E  C AT AP U L T 123

Figure 4-16. Building the catapult: step 16



124 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-17. Building the catapult: step 17



C H AP TE R  4  ■  TH E  C AT AP U L T 125

Figure 4-18. Building the catapult: steps 18 (rotate model) and 19



126 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-19. Building the catapult: step 20



C H AP TE R  4  ■  TH E  C AT AP U L T 127

Figure 4-20. Building the catapult: steps 21 (rotate model) and 22



128 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-21. Building the catapult: step 23



C H AP TE R  4  ■  TH E  C AT AP U L T 129

Figure 4-22. Building the catapult: step 24



130 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-23. Building the catapult: step 25



C H AP TE R  4  ■  TH E  C AT AP U L T 131

Figure 4-24. Building the catapult: steps 26 (rotate model) and 27



132 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-25. Building the catapult: step 28



C H AP TE R  4  ■  TH E  C AT AP U L T 133

Figure 4-26. Building the catapult: steps 29 (rotate model) and 30



134 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-27. Building the catapult: step 31



C H AP TE R  4  ■  TH E  C AT AP U L T 135

Figure 4-28. Building the catapult: steps 32 (rotate model) and 33



136 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-29. Building the catapult: step 34



C H AP TE R  4  ■  TH E  C AT AP U L T 137

Figure 4-30. Building the catapult: step 35



138 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-31. Building the catapult: step 36



C H AP TE R  4  ■  TH E  C AT AP U L T 139

Figure 4-32. Building the catapult: step 37



140 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-33. Building the catapult: step 38



C H AP TE R  4  ■  TH E  C AT AP U L T 141

Figure 4-34. Building the catapult: steps 39 (rotate model) and 40



142 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-35. Building the catapult: step 41



C H AP TE R  4  ■  TH E  C AT AP U L T 143

Figure 4-36. Building the catapult: step 42



144 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-37. Building the catapult: step 43



C H AP TE R  4  ■  TH E  C AT AP U L T 145

Figure 4-38. Building the catapult: step 44

Figure 4-39. Building the catapult: step 45



146 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-40. Building the catapult: steps 46 (rotate model) and 47

As a last step, you have to wire the sensors and the motors to the Brick. Connect each spring 
leaf’s end with a string to a reel: the left one to the left reel, the right one to the right reel. Make sure 
to connect them in a way that the spring is contracted when the great gear wheel turns in the forward 
direction.

Figure 4-41 shows the LEGO parts required for the catapult robot.



C H AP TE R  4  ■  TH E  C AT AP U L T 147

Figure 4-41. Required parts for the catapult robot

Programming the Catapult
This section demonstrates how to program the catapult using each of the programming environments 
introduced in Chapter 2. Just as the operation of a catapult is simple, the general structure of the 
program is rather simple also, consisting of loading the catapult, waiting for the user to press the 
trigger, and firing the catapult. Figure 4-42 shows this sequence of program actions.



148 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-42. The program’s flow for the catapult



C H AP TE R  4  ■  TH E  C AT AP U L T 149

LEGO MINDSTORMS NXT Software
To ensure that the program runs until the user manually switches it off, attach a loop block to the 
starting point of each NXT program, thus configuring the program to run forever (Figure 4-43).

Figure 4-43. The global forever loop block

The crank mechanism has to be connected to the great gear wheel by lifting the component 
appropriately. This is accomplished by running motor A that is in charge of the lifting device by 
30 degrees. Hence, you insert a motor block into the forever loop (Figure 4-44).

Figure 4-44. The motor block lifting the crank mechanism

Now that the crank mechanism is attached to the gear wheel, run the wheel, thus lifting the 
hurling arm and concurrently contracting the leaves by coiling their strings. Stop it once the arm hits 
the first touch sensor. Hence, you use a forever loop with the touch sensor’s press event as the stop 
criterion (Figure 4-45) and place a motor block for motor C inside (Figure 4-46).



150 CH AP T E R  4  ■  T HE  CA TA PU L T

Figure 4-45. The loop block for loading, controlled by the touch sensor

Figure 4-46. The motor block running the great gear wheel

Once the catapult is loaded and ready to be fired, stop motor C and wait for the user to press the 
second touch sensor. Again, you use a loop block controlled by the touch sensor (Figure 4-47).



C H AP TE R  4  ■  TH E  C AT AP U L T 151

Figure 4-47. The loop block for firing, controlled by the touch sensor

Once the user has pressed the button of the sensor, the crank mechanism has to be dropped 
away from the wheel, thus releasing the kinetic energy stored in the leaves in one blow and tossing 
the hurling arm. To this end, motor A has to be run by a convenient motor block, this time in the 
opposite direction. By inserting a wait block, you give the catapult some time to complete the firing 
process (Figure 4-48).

Figure 4-48. The motor block dropping the crank mechanism and the wait block

That’s it. The main forever loop starts the process again (Figure 4-49).

Figure 4-49. The catapult programmed with NXT-G



152 CH AP T E R  4  ■  T HE  CA TA PU L T

RobotC
For the RobotC program, let’s start again with declaring the sensors used. This time, it’s two 
touch sensors: 

const tSensors touchSensor1 = (tSensors) S1;
const tSensors touchSensor2 = (tSensors) S2;

task main() {

}

Again, you need an infinite loop for the endless execution of the program:

const tSensors touchSensor1 = (tSensors) S1;
const tSensors touchSensor2 = (tSensors) S2;

task main() {
  
  // endless loop
  while(true) {  
  };
}

Rotate the axis of the motor attached to the crank’s lifting mechanism by 30 degrees:

...
task main() {

. . .
  while(true) {

    // lift crank mechanism
    nMotorEncoder[motorA] = 0;
    while(nMotorEncoder[motorA] <= 30 ) {
      motor[motorA] = 75;
    }
    motor[motorA] = 0;

  };
}

To lift the hurling arm and contract the spring’s leaves, run the gear wheel until the first touch 
sensor triggers a “pressed” event. A sensor value of 0 means a logical false: 

. . .
task main() {

  . . .
  while(true) {
    // lift crank mechanism
    . . .
    motor[motorA] = 0;

    // load catapult
    // run motor until the first
    // touch sensor gets pressed



C H AP TE R  4  ■  TH E  C AT AP U L T 153

    while(SensorValue(touchSensor1) == 0) {
      motor[motorC] = 100;
    };
    motor[motorC] = 0;

  };
}

The catapult is now loaded. Wait for the user to press the second touch sensor to fire:

. . .
task main() {

. . .
  while(true) {
    . . .
    motor[motorC] = 0;

    // wait for the user to press the second touch sensor
    while(SensorValue(touchSensor2) == 0) {
      // do nothing
    };

  };
}

If the user presses the second touch sensor, you have to drop the crank mechanism by running 
motor A’s axle by 30 degrees in the opposite direction: 

. . .
task main() {

  . . .
  while(true) {
    . . .
    // wait for the user to press the second touch sensor
    while(SensorValue(touchSensor2) == 0) {
      // do nothing
    };

    // drop crank mechanism
    nMotorEncoder[motorA] = 0;
    while(nMotorEncoder[motorA] >= -30 ) {
      motor[motorA] = -75;
    }
    motor[motorA] = 0;

  };
}

Finally, wait for the catapult to complete firing:

. . .
task main() {
. . .



154 CH AP T E R  4  ■  T HE  CA TA PU L T

  while(true) {
    . . .
    motor[motorA] = 0;

    // wait for two seconds
    wait10Msec(200);

  };
}

And you’re done! Here’s the complete program:

const tSensors touchSensor1 = (tSensors) S1;
const tSensors touchSensor2 = (tSensors) S2;

task main() {

  // endless loop
  while(true) {

    // lift crank mechanism
    nMotorEncoder[motorA] = 0;
    while(nMotorEncoder[motorA] <= 30 ) {
      motor[motorA] = 75;
    }
    motor[motorA] = 0;

    // load catapult
    // run motor until until the first
    // touch sensor gets pressed
    while(SensorValue(touchSensor1) == 0) {
      motor[motorC] = 100;
    };
    motor[motorC] = 0;

    // wait for the user to press the second touch sensor
    while(SensorValue(touchSensor2) == 0) {
      // do nothing
    };

    // drop crank mechanism
    nMotorEncoder[motorA] = 0;
    while(nMotorEncoder[motorA] >= -30 ) {
      motor[motorA] = -75;
    }
    motor[motorA] = 0;

    // wait for two seconds
    wait10Msec(200);

  };
}



C H AP TE R  4  ■  TH E  C AT AP U L T 155

NXC
For the NXC program, start with declaring the two touch sensors: 

// enable NXC
#include "NXCDefs.h"

// main
task main() {

  // define sensors at port 1 and 2 to be touch sensors
  SetSensorType(IN_1,IN_TYPE_SWITCH);
  SetSensorType(IN_2,IN_TYPE_SWITCH);

}

The infinite loop looks very similar to the one in RobotC, so proceed to the lifting of the crank 
mechanism:

. . .
task main() {

  . . .
  SetSensorType(IN_2,IN_TYPE_SWITCH);

  // endless loop
  while(1) {

    // lift crank mechanism
    RotateMotor(OUT_A, 75, 30);
  }
}

Running the gear wheel until the first touch sensor triggers a “pressed” event loads the catapult: 

. . .
task main() {

  . . .
  while(1) {

    . . .
    RotateMotor(OUT_A, 75, 30);

    // load catapult
    // run motor until the first
    // touch sensor gets pressed
    OnFwd (OUT_C, 100);
    while(Sensor(IN_1) == 0) {
      // do nothing
    }
    Off(OUT_C);
  }
}



156 CH AP T E R  4  ■  T HE  CA TA PU L T

Waiting for the user to press the second touch sensor is done as follows:

. . .
task main() {

  . . .
  while(1) {
    . . .
    Off(OUT_C);

    // wait for the user to press the second touch sensor
    while(Sensor(IN_2) == 0) {
      // do nothing
    }

  }
}

Now drop the crank: 

. . .
task main() {

  . . .
  while(1) {

    . . .
    while(Sensor(IN_2) == 0) {
      // do nothing
    }

    // drop crank mechanism
    RotateMotor(OUT_A, -75, 30);
  }
}

And wait:

. . .
task main() {

  . . .
  while(1) {

    . . .
    // drop crank mechanism
    RotateMotor(OUT_A, -75, 30);

    // wait for two seconds
    Wait(2000);
  }
}



C H AP TE R  4  ■  TH E  C AT AP U L T 157

Here’s the complete NXC program for the catapult:

// enable NXC
#include "NXCDefs.h"

// main
task main() {

  // define sensors at ports 1 and 2 to be touch sensors
  SetSensorType(IN_1,IN_TYPE_SWITCH);
  SetSensorType(IN_2,IN_TYPE_SWITCH);

  // endless loop
  while(1) {

    // lift crank mechanism
    RotateMotor(OUT_A, 75, 30);

    // load catapult
    // run motor until the first
    // touch sensor gets pressed
    OnFwd (OUT_C, 100);
    while(Sensor(IN_1) == 0) {
      // do nothing
    }
    Off(OUT_C);

    // wait for the user to press the second touch sensor
    while(Sensor(IN_2) == 0) {
      // do nothing
    }
          
    // drop crank mechanism
    RotateMotor(OUT_A, -75, 30);

    // wait two seconds
    Wait(2000);
  }
}

pbLua
As a start, define the Catapult function and configure the touch sensors at ports 1 and 2 and the 
motors A and C:

-- function Catapult
function Catapult()

  -- configure the touch sensors on input ports 1 and 2
  nxt.InputSetDigi0(1)
  nxt.InputSetDirOutDigi0(1)
  nxt.InputSetDigi0(2)
  nxt.InputSetDirOutDigi0(2)



158 CH AP T E R  4  ■  T HE  CA TA PU L T

  -- configure motors A  and C to run in "brake" mode
  nxt.OutputSetMode(1,2)
  nxt.OutputSetMode(3,2)

end

After that, the infinite loop for the endless execution of the program is run:

. . .
function Catapult()

  . . .
  -- configure motors A  and C to run in "brake" mode
  nxt.OutputSetMode(1,2)
  nxt.OutputSetMode(3,2)

  -- loop forever
  while 1 do
  
  end

end

This time, define a second function that rotates a motor by a given amount of degrees and use 
it for lifting the crank mechanism:

. . .
function Catapult()

  . . .
  -- loop forever
  while 1 do
    -- lift crank mechanism
    -- rotate motor A by 30 degrees
    rotate(1,30)    

  end

end

-- function to rotate a motor by a given number of degrees
function rotate(motor,degrees)

  nxt.OutputEnableRegulation(motor,1)
  nxt.OutputSetMode(motor,2)
  nxt.OutputSetSpeed(motor,32,75,0)
  nxt.OutputSetTachoLimit(motor,degrees)

end

Run the gear wheel until the first touch sensor triggers a “pressed” event to load the catapult: 

. . .



C H AP TE R  4  ■  TH E  C AT AP U L T 159

function Catapult()

  . . .
  -- loop forever
  while 1 do
    . . .
    rotate(1,30)    

    -- load catapult
    -- run motor C until the first
    -- touch sensor gets pressed by the liftarm
    nxt.outputSetSpeed(3, 32, 100, 0)
    while nxt.InputGetRawAd(1) == 0
      -- do nothing
    end  
    
    nxt.OutputSetSpeed(3,0,0,0)

  end

end
. . .

Wait for the user to press the second touch sensor now:

. . .
function Catapult()

  . . .
  -- loop forever
  while 1 do
    . . .
    nxt.OutputSetSpeed(3,0,0,0)

    -- wait for the user to press the second touch sensor
    while nxt.InputGetRawAd(2) == 0
      -- do nothing
    end  

  end

end
. . .

And the loaded catapult gets fired: 

. . .
function Catapult()

  . . .
  -- loop forever
  while 1 do
    . . .
    -- wait for the user to press the second touch sensor
    while nxt.InputGetRawAd(2) == 0
      -- do nothing
    end  



160 CH AP T E R  4  ■  T HE  CA TA PU L T

    -- drop crank mechanism
    rotate(1,-30)

  end

end
. . .

Wait for two seconds:

. . .
function Catapult()

  . . .
  -- loop forever
  while 1 do
    . . .
    -- drop crank mechanism
    rotate(1,-30)

    -- wait for 2 seconds
    local endOfWait = nxt.TimerRead() + 2000
    while nxt.TimerRead() < endOfWait
      -- do nothing
    end

  end

end
. . .

With calling the Catapult function, the pbLua program for the catapult is finished:

-- function Catapult
function Catapult()

  -- configure the touch sensors on input ports 1 and 2
  nxt.InputSetDigi0(1)
  nxt.InputSetDirOutDigi0(1)
  nxt.InputSetDigi0(2)
  nxt.InputSetDirOutDigi0(2)

  -- configure motors A  and C to run in "brake" mode
  nxt.OutputSetMode(1,2)
  nxt.OutputSetMode(3,2)

  -- loop forever
  while 1 do
              
    -- lift crank mechanism
    -- rotate motor A by 30 degrees
    rotate(1,30)
  
    -- load catapult
    -- run motor C until until the first
    -- touch sensor gets pressed by the liftarm



C H AP TE R  4  ■  TH E  C AT AP U L T 161

    nxt.outputSetSpeed(3, 32, 100, 0)
    while nxt.InputGetRawAd(1) == 0
      -- do nothing
    end  

    nxt.OutputSetSpeed(3,0,0,0)

    -- wait for the user to press the second touch sensor
    while nxt.InputGetRawAd(2) == 0
      -- do nothing
    end  

    -- drop crank mechanism
    rotate(1,-30)
            
    -- wait for 2 seconds
    local endOfWait = nxt.TimerRead() + 2000
    while nxt.TimerRead() < endOfWait
      -- do nothing
    end  
            
  end

end

-- function to rotate a motor by a given number of degrees
function rotate(motor,degrees)

  nxt.OutputEnableRegulation(motor,1)
  nxt.OutputSetMode(motor,2)
  nxt.OutputSetSpeed(motor,32,75,0)
  nxt.OutputSetTachoLimit(motor,degrees)

end

-- now run the Catapult function 
Catapult()

LeJOS NXJ
Start with defining the Catapult class containing a main() method and importing the lejos.nxt 
package:

package org.nxtdavinci.catapult;

import lejos.nxt.*;

public class Catapult {

  public static void main(String[] args) throws Exception {
  }
}



162 CH AP T E R  4  ■  T HE  CA TA PU L T

Configure the two touch sensors and the motors’ power:

. . .
public class Catapult {

  public static void main(String[] args) throws Exception {

    // configure the touch sensors on input ports 1 and 2
    TouchSensor touchSensor1 = new TouchSensor(Port.S1);
    TouchSensor touchSensor2 = new TouchSensor(Port.S2);

    // configure the motors' speed
    Motor.A.setSpeed(600);
    Motor.C.setSpeed(900);
  }
}

To lift the crank mechanism as a start, rotate motor A by 30 degrees. Note the enclosing endless loop:

. . .
public class Catapult {

  public static void main(String[] args) throws Exception {

    . . .
    Motor.C.setSpeed(900);

    // endless loop
    while(true) {

      // lift crank mechanism
      Motor.A.rotateTo(30);
    }
  }
}

Load the catapult now by running the motor attached to the gear until the first touch sensor 
triggers an event:

. . .
public class Catapult {

  public static void main(String[] args) throws Exception {

    . . .
    while(true) {

      // lift crank mechanism
      Motor.A.rotateTo(30);

      // load catapult
      // run gear wheel's motor until the liftarm 
      // presses the first touch sensor
      while(!touchSensor1.isPressed()) {
        Motor.C.forward();
      };



C H AP TE R  4  ■  TH E  C AT AP U L T 163

      Motor.C.stop();
    }
  }
}

Wait for the user to fire the catapult:

. . .
public class Catapult {

  public static void main(String[] args) throws Exception {

    . . .
    while(true) {

      . . .
      while(!touchSensor1.isPressed()) {
        Motor.C.forward();
      };
      Motor.C.stop();

      // wait for the user to fire the catapult
      while(!touchSensor2.isPressed()) {
        // do nothing
      };
    }
  }
}

When the user triggers firing, drop the crank mechanism to release the gear wheel:

. . .
public class Catapult {

  public static void main(String[] args) throws Exception {

    . . .
    while(true) {

      . . .
      // wait for the user to fire the catapult
      while(!touchSensor2.isPressed()) {
        // do nothing
      };

      // drop crank mechanism
      Motor.A.rotateTo(-30);
    }
  }
}



164 CH AP T E R  4  ■  T HE  CA TA PU L T

Wait a bit:

. . .
public class Catapult {

  public static void main(String[] args) throws Exception {

    . . .
    while(true) {

      . . .
      // drop crank mechanism
      Motor.A.rotateTo(-30);

      // wait for two seconds
      Thread.sleep(2000);

    }
  }
}

Now you are finished:

package org.nxtdavinci.catapult;

import lejos.nxt.*;

public class Catapult {

  publsic static void main(String[] args) throws Exception {

    // configure the touch sensors on input ports 1 and 2
    TouchSensor touchSensor1 = new TouchSensor(Port.S1);
    TouchSensor touchSensor2 = new TouchSensor(Port.S2);

    // configure the motors' speed
    Motor.A.setSpeed(600);
    Motor.C.setSpeed(900);

    // endless loop
    while(true) {

      // lift crank mechanism
      Motor.A.rotateTo(30);

      // load catapult
      // run gear wheel's motor until the liftarm 
      // presses the first touch sensor
      while(!touchSensor1.isPressed()) {
        Motor.C.forward();
      };
      Motor.C.stop();



C H AP TE R  4  ■  TH E  C AT AP U L T 165

      // wait for the user to fire the catapult
      while(!touchSensor2.isPressed()) {
        // do nothing
      };

      // drop crank mechanism
      Motor.A.rotateTo(-30);

      // wait for two seconds
      Thread.sleep(2000);

    }
  }
}

Summary
In this chapter you built another military device designed by Leonardo, resulting in a rather complex 
NXT robot: the catapult. You learned how to make use of the motors for different tasks and became 
familiar with the first type of sensor, the touch sensor.

On the software side, accessing that sensor and its state is now transparent to you. In addition 
to that, you learned about implementing more complex control structures and program flow with 
the different programming languages.

In the next chapter you will learn about another type of sensor, the ultrasonic sensor, when you 
build Leonardo’s invention of the revolving bridge.



167

■ ■ ■

C H A P T E R  5

The Revolving Bridge 

Water is the driving force of all nature.

—Leonardo da Vinci

In this chapter, you will build Leonardo’s revolving bridge. This robot makes use of the ultrasonic 
sensor, and you will learn how to access it in five different NXT programming languages. This 
chapter also covers how to synchronize motors and how to use strings to transfer motor control to 
remote hardware components.

Historical Background
With an interest in hydrodynamic topics and an occupation as a military engineer, it’s small wonder 
that Leonardo undertook the task of devising concepts for bridges for military and economical reasons. 
During his life, he came up with a lot of concepts for structures over rivers. Most were intended to be 
flexible and easy to build, so were made of wood rather than stone. Aside from his 720-foot wood 
bridge meant to span the Golden Horn at the mouth of the Bosporus, other well-known designs include 
a pontoon bridge, a double-deck bridge that allowed both pedestrians and carriages to cross the river at 
the same time, and a self-supporting bridge made from wooden balks that did not require nails. 

Leonardo drew the revolving bridge in Milan in the 1580s, and the drawing is today contained 
in the Codex Atlanticus (Figure 5-1). In his letter to Duke Ludovico, he talks of “plans for very light 
yet stable bridges.”

Bridges have always been important to human societies as a means to cross obstacles such as 
rivers, lakes, or abysses. Stable and reliable bridges have made the transportation of people and 
goods possible, establishing long-range economical connections on a large scale. In particular, in 
the medieval ages, with roads and rivers providing the major means of inland transportation, bridges 
were crucial. 

Bridges were also important for military reasons. They could form a bottleneck that hampered 
enemy troops laden with heavy artillery. Bridges were of paramount importance in military strategies 
because they formed a point of defense against advancing enemies, as well as represented primary 
targets for those very adversaries.

In his design of the revolving bridge, Leonardo relies on an antique pretext but solves the problem 
of defending the structure against the peril of enemies in a fancy way: with hostile troops advancing, 
the bridge could swing around a pylon, separating it from the shore. The enemy could then no longer 
cross the river. Simple, but completely efficient.



168 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-1. Leonardo’s drawing of the revolving bridge

It must not be forgotten that the revolving mechanism imposed an important economical 
advantage as well. The bridge’s ability to move made it possible for large ships to pass on their 
(mostly economical) journeys. 

Hardware Challenges
Generally speaking, building a bridge with LEGO is not the most complex thing in the world. With 
Leonardo’s revolving bridge, however, the fulcrum it swings around poses a particular challenge. 
The fulcrum is the only point from which the whole structure is suspended. This means everything 
must be in balance and stable while allowing for movement.

For the implementation of the fulcrum with LEGO, I use a turntable that is fixed to a base plate. 
This provides both the required stability and flexibility needed (Figure 5-2).



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  169

Figure 5-2. Implementation of the fulcrum

Building the Revolving Bridge
Figure 5-3 shows the completed revolving bridge robot. Note that I have added an ultrasonic sensor 
to Leonardo’s original design on the far-side base of the bridge. It is used to automatically swing the 
bridge away when the sensor spots approaching enemies—a contraption Leonardo certainly would 
have liked.



170 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-3. The completed revolving bridge robot

The following images (Figures 5-4 through 5-42) show step-by-step instructions on how to build 
the revolving bridge.



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  171

Figure 5-4. Building the revolving bridge: step 1



172 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-5. Building the revolving bridge: steps 2 (rotate model) and 3



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  173

Figure 5-6. Building the revolving bridge: step 4



174 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-7. Building the revolving bridge: step 5



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  175

Figure 5-8. Building the revolving bridge: step 6



176 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-9. Building the revolving bridge: steps 7 (rotate model) and 8



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  177

Figure 5-10. Building the revolving bridge: step 9



178 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-11. Building the revolving bridge: step 10



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  179

Figure 5-12. Building the revolving bridge: steps 11 (rotate model) and 12



180 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-13. Building the revolving bridge: step 13



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  181

Figure 5-14. Building the revolving bridge: step 14



182 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-15. Building the revolving bridge: steps 15 (rotate model) and 16



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  183

Figure 5-16. Building the revolving bridge: step 17



184 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-17. Building the revolving bridge: steps 18 (rotate model) and 19



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  185

Figure 5-18. Building the revolving bridge: steps 20 (rotate model) and 21



186 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-19. Building the revolving bridge: step 22



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  187

Figure 5-20. Building the revolving bridge: step 23



188 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-21. Building the revolving bridge: steps 24 (rotate model) and 25



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  189

Figure 5-22. Building the revolving bridge: step 26



190 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-23. Building the revolving bridge: step 27



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  191

Figure 5-24. Building the revolving bridge: step 28



192 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-25. Building the revolving bridge: step 29



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  193

Figure 5-26. Building the revolving bridge: steps 30 (rotate model) and 31



194 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-27. Building the revolving bridge: step 32



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  195

Figure 5-28. Building the revolving bridge: step 33



196 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-29. Building the revolving bridge: step 34



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  197

Figure 5-30. Building the revolving bridge: step 35



198 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-31. Building the revolving bridge: steps 36 (rotate model) and 37



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  199

Figure 5-32. Building the revolving bridge: steps 38 (rotate model) and 39



200 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-33. Building the revolving bridge: step 40



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  201

Figure 5-34. Building the revolving bridge: step 41



202 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-35. Building the revolving bridge: step 42



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  203

Figure 5-36. Building the revolving bridge: step 43



204 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-37. Building the revolving bridge: steps 44 (rotate model) and 45



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  205

Figure 5-38. Building the revolving bridge: step 46



206 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-39. Building the revolving bridge: step 47



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  207

Figure 5-40. Building the revolving bridge: step 48



208 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-41. Building the revolving bridge: step 49



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  209

Figure 5-42. Building the revolving bridge: step 50

The building of the bridge concludes with wiring the motors and the sensors to the Brick. 
Finally, you connect the winches with the L-shaped beams at the end of the bridge by strings (e.g., 
strong sewing threads). Do not forget to pass each thread through the hole of the triangular structure 
at its corner of the base plate.

Figure 5-43 shows the LEGO parts required for the revolving bridge robot.



210 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-43. Required parts for the revolving bridge robot

Programming the Revolving Bridge
Not surprisingly, the general flow of the program for the bridge is not very complex (Figure 5-44):

1. Wait for an object to approach the structure.

2. Once the ultrasonic sensor has detected something, move the bridge to the side by running 
the two motors.

3. Wait until the sensor does not detect anything anymore.

4. Reset the bridge to its original state.



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  211

Figure 5-44. The program’s flow for the revolving bridge

LEGO MINDSTORMS NXT Software
Again, you start with a loop block that runs forever (Figure 5-45).



212 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-45. The revolving bridge programmed with NXT-G: the global forever loop block

Now you wait until the ultrasonic sensor detects an approaching object. Therefore, you insert a 
loop block again, this time appropriately configured by the ultrasonic sensor (Figure 5-46).

Figure 5-46. The ultrasonic sensor loop block for detection

Once an object is detected, switch the bridge away by running the two motors that operate the 
winches. For synchronizing these two motors, use a Move block that is configured to run them in 
opposite directions (Figure 5-47).



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  213

Figure 5-47. The Move block switching the bridge away

Now that the bridge is switched away, wait for the ultrasonic sensor to detect that there is no 
object, which means that the possible enemies have retreated. As before, use a loop block configured 
by the ultrasonic sensor; this time, though, the stop criterion is vice versa (Figure 5-48).

Figure 5-48. The ultrasonic sensor loop block for no detection

Once no object can be detected any longer, the bridge is switched back by an appropriately 
configured Move block (Figure 5-49).



214 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Figure 5-49. The Move block resetting the bridge

And you’re done. Figure 5-50 shows the complete NXT-G program.

Figure 5-50. The complete revolving bridge NXT-G program

RobotC
To program with RobotC, use the ultrasonic sensor attached to port 4:

const tSensors sonarSensor = (tSensors) S4;
task main() {

}

Again, you need an infinite loop for the endless execution of the program and an inner loop that 
runs until the ultrasonic sensor detects something:

const tSensors ultrasonicSensor = (tSensors) S1;
task main() {

  // endless loop
  while(true) {



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  215

    // wait until ultrasonic sensor detects something
    do {
      // do nothing until ultrasonic sensor detects 
      // an object nearer than 50 inches
    } while(SensorValue(ultrasonicSensor) > 50);
  }
}

To switch the bridge, run motors B and C in opposite directions for ten rotations. Since you want 
to synchronize the motors, you should appropriately set the variable nSyncedMotors that is predefined by 
RobotC to synchBC, which means that motor C is synchronized to motor B. Moreover, set the predefined 
variable nSyncedTurnRatio to –100, which means that the synchronizing is performed in the opposite 
turning direction. Note that due to the synchronization, you have to adjust the power of the master 
motor only:

const tSensors ultrasonicSensor = (tSensors) S1;
task main() {

  // endless loop
  while(true) {

    // wait until ultrasonic sensor detects something
    do {
      . . .
    } while(SensorValue(ultrasonicSensor) > 50);

    // synchronize motors B and C in opposite directions
    nSyncedMotors = synchBC;
    nSyncedTurnRatio = –100;

    // run motors for 10 rotations which is 3600 degrees
    nMotorEncoder[motorB] = 0;
    nMotorEncoderTarget[motorB] = 3600; 
    motor[motorB] = 75;

  }
}

A further loop that runs until the ultrasonic sensor does not detect anything any longer follows:

const tSensors ultrasonicSensor = (tSensors) S1;
task main() {
  // endless loop
  while(true) {

    ...
    motor[motorB] = 75;

    // wait until ultrasonic sensor does not detect anything any longer
    while(SensorValue(ultrasonicSensor) < 50) {
      // do nothing until ultrasonic sensor does not detect 
      // an object nearer than 50 inches
    }

  };
}

Switch the bridge back by running the synchronized motors in the opposite direction:



216 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

const tSensors ultrasonicSensor = (tSensors) S1;
task main() {

  // endless loop
  while(true) {

    . . . 
    while(SensorValue(ultrasonicSensor) < 50) {
     ... 
    }

    // run motors back for 10 rotations which is -3600 degrees
    nMotorEncoder[motorB] = 0;
    nMotorEncoderTarget[motorB] = -3600; 
    motor[motorB] = 75;

  }
}

That’s all. The complete program looks like this:

const tSensors ultrasonicSensor = (tSensors) S1;
task main() {

  // endless loop
  while(true) {

    // wait until ultrasonic sensor detects something
    do {
      // do nothing until ultrasonic sensor detects 
      // an object nearer than 50 inches
    } while(SensorValue(ultrasonicSensor) > 50);

    // synchronize motors B and C in opposite directions
    nSyncedMotors = synchBC;
    nSyncedTurnRatio = –100;

    // run motors for 10 rotations which is 3600 degrees
    nMotorEncoder[motorB] = 0;
    nMotorEncoderTarget[motorB] = 3600;
    motor[motorC] = 75;

    // wait until ultrasonic sensor does not detect anything any longer
    while(SensorValue(ultrasonicSensor) < 50) {
     // do nothing until ultrasonic sensor does not detect 
     // an object nearer than 50 inches
    }

    // run motors back for 10 rotations which is -3600 degrees
    nMotorEncoder[motorB] = 0;
    nMotorEncoderTarget[motorB] = -3600; 
    motor[motorB] = 75;

  }
}



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  217

NXC
The NXC program flow starts with the definition of the ultrasonic sensor at port 1: 

// enable NXC
#include "NXCDefs.h"

// main
task main() {

  // we use an ultrasonic sensor at port 1
  SetSensorType(IN_1,IN_TYPE_REFLECTION);
}

The infinite loop for the endless execution of the program contains an inner loop with detection 
statements for the ultrasonic sensor:

. . .
task main() {

  // we use an ultrasonic sensor at port 1
  SetSensorType(IN_1,IN_TYPE_REFLECTION);

  // endless loop
  while(1) {

    // wait until ultrasonic sensor detects something
    do {
      // do nothing until ultrasonic sensor detects
      // an object nearer than 50 inches
    } while(Sensor(IN_1) > 50);
  }
}

To switch the bridge, synchronize motors B and C but in opposite directions for 3600 degrees, 
which is ten rotations:

. . .
task main() {

  . . .
  while(1) {

    // wait until ultrasonic sensor detects something
    do {
      // do nothing until ultrasonic sensor detects
      // an object nearer than 50 inches
    } while(Sensor(IN_1) > 50);

    // run motors synchronized for 10 rotations which is 3600 degrees
    // third parameter 100 means: B and C in opposite directions
    RotateMotorEx (OUT_BC, 75, 3600, 100, true);

  }
}



218 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Do nothing until the ultrasonic sensor does not detect anything:

. . .
task main() {

  . . .
  while(1) {

    . . .
    RotateMotorEx (OUT_BC, 75, 3600, 100, true);

    // wait until ultrasonic sensor does not detect anything any longer
    while(Sensor(IN_1) < 50) {
      // do nothing
    }
  }
}

When no approaching enemies are detected, switch the bridge back by running the synchro-
nized motors in the opposite direction, that is, by -3600 degrees:

. . .
task main() {

  . . .
  while(1) {

    . . .
    while(Sensor(IN_1) < 50) {
      // do nothing
    }

    // switch back the bridge
    RotateMotorEx (OUT_BC, 75, -3600, 100, true);
  }
}

And you are done. The following is the complete NXC program for the revolving bridge:

// enable NXC
#include "NXCDefs.h"

// main
task main() {

  // we use an ultrasonic sensor at port 1
  SetSensorType(IN_1,IN_TYPE_REFLECTION);

  // endless loop
  while(1) {

    // wait until ultrasonic sensor detects something
    do {
      // do nothing until ultrasonic sensor detects
      // an object nearer than 50 inches
    } while(Sensor(IN_1) > 50);



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  219

    // run motors synchronized for 10 rotations which is 3600 degrees
    // third parameter 100 means: B and C in opposite directions
    RotateMotorEx (OUT_BC, 75, 3600, 100, true);
    
    // wait until ultrasonic sensor does not detect anything any longer
    while(Sensor(IN_1) < 50) {
      // do nothing
    }

    // switch back the bridge
    RotateMotorEx (OUT_BC, 75, -3600, 100, true);
    
  }
}

pbLua
Define the RevolvingBridge function and add configurations for the ultrasonic sensor on port 1 and 
the motors B and C: 

-- function RevolvingBridge
function RevolvingBridge()

  -- configure the ultrasonic sensor on input port 1
  nxt.InputSetDigi0(1)
  nxt.InputSetDirOutDigi0(1)

  -- configure motors B and C to run in "brake" mode
  -- enable regulation
  nxt.OutputSetMode(2,2)
  nxt.OutputSetMode(3,2)
  nxt.OutputEnableRegulation(2,1)
  nxt.OutputEnableRegulation(3,1)

end

The first statement in the infinite loop is another loop that waits until the ultrasonic sensor 
detects something approaching:

-- function RevolvingBridge
function RevolvingBridge()

  . . .
  nxt.OutputEnableRegulation(3,1)

  -- loop forever
  while 1 do

    -- wait for the ultrasonic sensor to detect something nearer than 50 inches
    while nxt.InputGetRawAd(1) > 50
      -- do nothing
    end  
  end
end



220 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

Synchronizing motors B and C in opposite directions and running them for ten rotations 
switches the bridge away:

-- function RevolvingBridge
function RevolvingBridge()

  . . .
  while 1 do

    -- wait for the ultrasonic sensor to detect something nearer than 50 inches
    while nxt.InputGetRawAd(1) > 50
      -- do nothing
    end  

    -- run motors B and C synchronized in opposite directions for 10 rotations
    -- first synchronize motor B and C
    nxt.OutputSetRegulation(2,2,1)
    nxt.OutputSetRegulation(3,2,1)
    -- now run motors for 10 rotations (= 3600 degrees)
    nxt.OutputSetSpeed(2, 32, 100, 0)
    nxt.OutputSetSpeed(3, 32, -100, 0)
    nxt.OutputSetTachoLimit(2, 3600)
    nxt.OutputSetTachoLimit(3, 3600)

  end
end

Again, you wait, this time until the ultrasonic sensor no longer detects anything in proximity:

-- function RevolvingBridge
function RevolvingBridge()

  . . .
  while 1 do

    . . .
    nxt.OutputSetTachoLimit(3, 3600)

    -- wait for the ultrasonic sensor no longer detecting
    -- something nearer than 50 inches
    while nxt.InputGetRawAd(1) < 50
      -- do nothing
    end  
  end
end

Switch the bridge back:

-- function RevolvingBridge
function RevolvingBridge()

  . . .
  while 1 do

    . . .



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  221

    while nxt.InputGetRawAd(1) < 50
      -- do nothing
    end  

    -- switch back the bridge
    -- run motors in opposite direction for 10 rotations (= 3600 degrees)
    -- note that each motor runs in the reverse direction than before
    nxt.OutputSetSpeed(2, 32, -100, 0)
    nxt.OutputSetSpeed(3, 32, 100, 0)
    nxt.OutputSetTachoLimit(2, 3600)
    nxt.OutputSetTachoLimit(3, 3600)

  end
end

Finally, call the RevolvingBridge function:

-- function RevolvingBridge
function RevolvingBridge()

  . . .
  while 1 do

    . . .
  end
end

-- now run the RevolvingBridge function 
RevolvingBridge()

This is the complete pbLua program for the revolving bridge:

-- function RevolvingBridge
function RevolvingBridge()

  -- configure the ultrasonic sensor on input port 1
  nxt.InputSetDigi0(1)
  nxt.InputSetDirOutDigi0(1)

  -- configure motors B and C to run in "brake" mode
  -- enable regulation
  nxt.OutputSetMode(2,2)
  nxt.OutputSetMode(3,2)
  nxt.OutputEnableRegulation(2,1)
  nxt.OutputEnableRegulation(3,1)
    
  -- loop forever
  while 1 do

    -- wait for the ultrasonic sensor to detect something nearer than 50 inches
    while nxt.InputGetRawAd(1) > 50
      -- do nothing
    end  



222 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

    -- run motors B and C synchronized in opposite directions for 10 rotations
    -- first synchronize motor B and C
    nxt.OutputSetRegulation(2,2,1)
    nxt.OutputSetRegulation(3,2,1)
    -- now run motors for 10 rotations (= 3600 degrees)
    nxt.OutputSetSpeed(2, 32, 100, 0)
    nxt.OutputSetSpeed(3, 32, -100, 0)
    nxt.OutputSetTachoLimit(2, 3600)
    nxt.OutputSetTachoLimit(3, 3600)

    -- wait for the ultrasonic sensor no longer detecting 
    -- something nearer than 50 inches
    while nxt.InputGetRawAd(1) < 50
      -- do nothing
    end  

    -- switch back the bridge
    -- run motors in opposite direction for 10 rotations (= 3600 degrees)
    -- note that each motor runs in the reverse direction than before
    nxt.OutputSetSpeed(2, 32, -100, 0)
    nxt.OutputSetSpeed(3, 32, 100, 0)
    nxt.OutputSetTachoLimit(2, 3600)
    nxt.OutputSetTachoLimit(3, 3600)

  end
end

-- now run the RevolvingBridge function 
RevolvingBridge()

leJOS NXJ
Again, you start with defining the RevolvingBridge class containing a main() method and importing 
the lejos.nxt package:

package org.davincinxt.revolvingbridge;

import lejos.nxt.Motor;
import lejos.nxt.SensorPort;
import lejos.nxt.UltrasonicSensor;

public class RevolvingBridge {

       public static void main(String[] args) throws Exception {
       
       }

}



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  223

Configure the motors’ power and the ultrasonic sensor and start an endless loop:

. . .
public class RevolvingBridge {

   public static void main(String[] args) throws Exception {
       
      // speed
      Motor.B.setSpeed(600);
      Motor.C.setSpeed(600);

      // sonar sensor at port 1
      UltrasonicSensor us = new UltrasonicSensor(SensorPort.S1);

      // endless loop
      while(true) {

      }
   }

}

Wait until the ultrasonic sensor detects an object nearer than 50 centimeters:

. . .
public class RevolvingBridge {

   public static void main(String[] args) throws Exception {

      . . .
      // endless loop
      while(true) {

         // check for detection
         // we do nothing as long as nothing is detected
         int distanceToNearestObject = 1000;
         while((distanceToNearestObject = us.getDistance())>=50) {
            // do nothing
         }

           }
   }

}

There’s something approaching, so you swing the bridge away. Note that leJOS NXJ did not 
provide an explicit feature for motor synchronization at the time of this writing:

. . .
public class RevolvingBridge {

   public static void main(String[] args) throws Exception {

      . . .



224 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

      // endless loop      
      while(true) {

         . . .
         while((distanceToNearestObject = us.getDistance())>=50) {
            // do nothing
         }

         // switch bridge away
         // note that leJOS NXJ did not provide an explicit feature
         // for motor synchronization at the time of this writing
         Motor.B.rotateTo(3600);
         Motor.C.rotateTo(-3600);
      }
   }

}

Wait until no object nearby can be detected any longer:

. . .
public class RevolvingBridge {
   public static void main(String[] args) throws Exception {
       
      . . .
      // endless loop
      while(true) {

         . . .
         Motor.C.rotateTo(-3600);

         // check for detection
         // we do nothing as long as something is detected
         while((distanceToNearestObject = us.getDistance())<50) {
            // do nothing
         }

      }
   }

}

If nothing can be detected any longer, swing the bridge back:

. . .
public class RevolvingBridge {
   public static void main(String[] args) throws Exception {
      . . .
      // endless loop
      while(true) {

         . . .
         while((distanceToNearestObject = us.getDistance())<50) {
            // do nothing
         }



CH AP T E R  5  ■  TH E  R E V O L V IN G  B R I DG E  225

         // reset bridge
         // note that leJOS NXJ did not provide an explicit feature
         // for motor synchronization at the date of this writing
         Motor.B.rotateTo(-3600);
         Motor.C.rotateTo(3600);

      }
   }

}

And that’s it. Here’s the complete leJOS NXJ program for the revolving bridge:

package org.davincinxt.revolvingbridge;

import lejos.nxt.Motor;
import lejos.nxt.SensorPort;
import lejos.nxt.UltrasonicSensor;

public class RevolvingBridge {
   public static void main(String[] args) throws Exception {
      // speed
      Motor.B.setSpeed(600);
      Motor.C.setSpeed(600);

      // sonar sensor at port 1
      UltrasonicSensor us = new UltrasonicSensor(SensorPort.S1);

      // endless loop
      while(true) {

         // check for detection
         // we do nothing as long as nothing is detected
         int distanceToNearestObject = 1000;
         while((distanceToNearestObject = us.getDistance())>=50) {
            // do nothing
         }

         // switch bridge away
         // note that leJOS NXJ did not provide an explicit feature
         // synchronization at the date of this writing
         Motor.B.rotateTo(3600);
         Motor.C.rotateTo(-3600);

         // check for detection
         // we do nothing as long as something is detected
         while((distanceToNearestObject = us.getDistance())<50) {
            // do nothing
         }



226 CH AP T E R  5  ■  T HE  R E V O L V IN G  B R I DG E  

         // reset bridge
         // note that leJOS NXJ did not provide an explicit feature
         // for motor synchronization at the date of this writing
         Motor.B.rotateTo(-3600);
         Motor.C.rotateTo(3600);

      }
   }

}

Summary
In this chapter, you were acquainted with another type of NXT sensor: the ultrasonic sensor. You 
now know what to use it for, how to use it, and how to access it programmatically in five different 
NXT programming languages. Furthermore, you also know about synchronizing motors and have 
seen how to use strings to transfer motor control to remote hardware components.

The next chapter deals with the first of Leonardo’s two flying devices addressed in this book: the 
aerial screw. I will revise the subject of implementing curved structures with LEGO and look at another 
type of NXT standard sensor, the light sensor.



227

■ ■ ■

C H A P T E R  6  

The Aerial Screw

For once you have tasted flight you will walk the earth with your eyes turned skywards, for
there you have been and there you will long to return.

—Leonardo da Vinci

In this chapter you will build the first of Leonardo’s two flying machines. You will learn how to make 
curved structures with LEGO parts and use turntables, gear wheels, and axles for creating a stable 
hub. The light sensor is also introduced in this chapter.

Historical Background
Leonardo was deeply convinced of man’s ability to fly by his own muscular power. You might even 
say he was obsessed by this idea and never gave it up all throughout his life. He clung to the theory 
that all living beings—humans and animals alike—were mechanically similar. The fact that birds 
and insects could fly led him to believe that the obvious inability of humans to fly was not a funda-
mental one and could be overcome by engineering means. Following, as usual, a pragmatic rather 
than a theoretical approach, Leonardo believed the matter boiled down to creating enough power to 
overcome the resistance that fixed the human body to the ground. The main challenge was to find a 
way to sufficiently amplify the muscular powers by mechanical aids.

The draft of Leonardo’s aerial screw, drawn around 1490, is part of the so-called “Manuscript B,” 
a notebook comprising 50 double folios, or 100 pages, with an additional 5 loose sheets (Figure 6-1). 
It’s the earliest of Leonardo’s bound manuscripts and is now kept in Paris.



228 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-1. Leonardo’s drawing of the aerial screw

Although the design resembles a modern helicopter, its concept is essentially different from the 
one a helicopter uses to lift into the air. The aerial screw is based on the idea of “screwing into a fluid 
medium,” while a helicopter flies because of aerodynamic lift—a force generated by the flow of air 
around adequately shaped wings. 

■Note  Incidentally, Leonardo actually did create another design that may be reasonably labeled as a helicopter. 
It is also contained in the Manuscript B.



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 229

In addition to his belief in the similarities of the mechanical operations of living beings, Leonardo 
believed in the similarities of substances, in particular water and air. In his view, air was a lightweight 
kinsman of water and followed the same fluid mechanics. As a result, it was natural to transfer the 
experiences he gained from his extended studies of hydrodynamics to design devices meant for 
movement in the air. This is reflected in the general concept of the aerial screw; it is like a screw 
propelling a ship by pushing water back. The spiral top of the machine was meant to screw itself 
through the air, thus driving the whole mechanism upward, provided that an effectual rotation 
speed could be generated by the underlying powering device.

We might ask if the aerial screw would actually have been able to fly. Apart from the fact that the 
whole concept of “screwing into the air” couldn’t work because air is too thin, the planned power of 
four men would have been far to low to lift the heavy weight of the 45-foot diameter construction. At 
most, the screw might have fallen over onto its top. 

In contrast to other branches of Leonardo’s research, dealing with flight was something he never 
seems to have presented to potential employers or customers but kept as some kind of private inves-
tigation. We do not know if he hoped to exploit his results economically in the end, as they never 
manifested during his lifetime. After all, this field of research most likely was viewed as too obscure 
by Renaissance investors, who were mainly interested in tangible and practical applications.

Rising from the ground and flying through the air is one of the oldest dreams of mankind. Many 
myths tell of godlike beings that are able to fly, either by their sheer will or aided by wings. The 
legendary Greek story of inventor Daedalus and his son Icarus who flew from Crete using wings 
Daedalus made is well-known, though it has a tragic outcome: Icarus rises too high, and the wax that 
keeps the feathers together melts near the sun and he falls to his death.

It is said that like many things, the Chinese were the first to actually bring the idea of humans 
rising from the soil into the air into reality. In the 14th century, Marco Polo reported that kites in China 
carried men to scout military troops, noting that this kind of flying has allegedly been used for many 
centuries there.

We also know of some attempts to fly in medieval Europe, performed by singular people who 
mostly jumped from elevated locations and tried to mimic birds, often with a tragic end. In general, 
though, the mainly metaphysically minded people of this era were averse to the general possibility 
of men flying at all. Consequently, up to the Renaissance, no real progress was made in this matter. 
It took almost another 300 years after Leonardo’s days before human beings could be lifted into the 
air with the balloons of the Montgolfiere brothers, and another 100 years until the glider and plane 
experiments of Otto Lilienthal (Figure 6-2) and the Wright brothers were successful.



230 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-2. Otto Lilienthal’s glider



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 231

Hardware Challenges
The challenging part of the aerial screw arguably is the twisted upper wing helix. Since LEGO does 
not provide these types of plates, I use beams of different length attached to a central hub made of 
turntables and axles (Figure 6-3).

Figure 6-3. The aerial screw’s helix

You will have to add strings to interconnect the end of the beams with each other and with the 
central hub. At your leisure, you could optimize the aerial screw’s appearance by attaching appro-
priate sheets of fabric between the beams.

Building the Aerial Screw
Figure 6-4 shows the completed aerial screw robot. To make the program for the aerial screw more 
instructive, I decided to integrate a light sensor into the base plate to count the number of rotations.



232 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-4. The complete aerial screw robot

The following images (Figures 6-5 through 6-37 ) show show step-by-step instructions on how 
to build the aerial screw.



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 233

Figure 6-5. Building the aerial screw: step 1



234 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-6. Building the aerial screw: step 2



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 235

Figure 6-7. Building the aerial screw: step 3



236 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-8. Building the aerial screw: steps 4 (rotate model) and 5



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 237

Figure 6-9. Building the aerial screw: step 6

Figure 6-10. Building the aerial screw: steps 7 (rotate model) and 8



238 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-11. Building the aerial screw: steps 9 (rotate model) and 10

Figure 6-12. Building the aerial screw: step 11



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 239

Figure 6-13. Building the aerial screw: step 12



240 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-14. Building the aerial screw: steps 13 (rotate model) and 14



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 241

Figure 6-15. Building the aerial screw: steps 15 (rotate model) and 16



242 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-16. Building the aerial screw: steps 17 (rotate model) and 18



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 243

Figure 6-17. Building the aerial screw: step s 19 (rotate model) and 20



244 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-18. Building the aerial screw: steps 21 (rotate model) and 22



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 245

Figure 6-19. Building the aerial screw: steps 23 (rotate model) and 24



246 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-20. Building the aerial screw: steps 25 (rotate model) and 26



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 247

Figure 6-21. Building the aerial screw: steps 27 (rotate model) and 28



248 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-22. Building the aerial screw: steps 29 (rotate model) and 30



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 249

Figure 6-23. Building the aerial screw: steps 31 (rotate model) and 32



250 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-24. Building the aerial screw: steps 33 (rotate model) and 34

Figure 6-25. Building the aerial screw: steps 35 (rotate model) and 36



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 251

Figure 6-26. Building the aerial screw: steps 37 (rotate model) and 38

Figure 6-27. Building the aerial screw: step 39



252 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-28. Building the aerial screw: step 40

Figure 6-29. Building the aerial screw: step 41



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 253

Figure 6-30. Building the aerial screw: step s 42 (rotate model) and 43



254 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-31. Building the aerial screw: steps 44 (rotate model) and 45



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 255

Figure 6-32. Building the aerial screw: steps 46 (rotate model) and 47



256 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-33. Building the aerial screw: steps 48 (rotate model) and 49



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 257

Figure 6-34. Building the aerial screw: step 50



258 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-35. Building the aerial screw: step 51



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 259

Figure 6-36. Building the aerial screw: steps 52 (rotate model) and 53



260 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-37. Required parts for the aerial screw

Programming the Aerial Screw
With the aerial screw’s program, you want to simulate the men driving the helix by gripping the 
levers attached to the central hub and running around it. As the helix’s rotation gains speed once the 
initial inertia is overpowered, the program has to increase the power of the associated motor in the 
course of time. You use the number of rotations as a factor.

For illustration reasons, the rotations are not counted by the motor’s built-in counter but by a 
light sensor that is countersunk in the platform; each time the spill’s grip passes the light sensor, it 
triggers an event. When the rotation speed is at maximum, you keep on rotating until the user stops 
the program (Figure 6-38).



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 261

Figure 6-38. The program flow of the aerial screw



262 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

LEGO MINDSTORMS NXT Software
For this robot, you will not start with a forever loop, but with a loop that runs until the power of the 
motor of the helix is at 100%. For that, you do the following:

• Define a numeric variable that will hold the motor power (called motorPower) and initialize it 
with a value of 20.

• Run the helix’s motor with an according initial power of 20%.

• Insert a loop block with a logical stop criterion (Figure 6-39).

Figure 6-39. The motor power variable

Next, you do the following: 

• Attach the stop criterion of the loop with a logical comparison block that checks the input 
against a value of 100.

• Connect the output of the hub’s power property with the input A of the logical comparison 
block. 

• Connect the input of the hub’s power property with the motorPower variable (Figure 6-40).



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 263

Figure 6-40. The logical loop block

In each iteration of the loop, you need a subroutine that checks the light sensor for detection. 
This is done by inserting a loop block that stops when the light sensor triggers an event (Figure 6-41).

Figure 6-41. The loop block checking the light sensor

Note that depending on the ambient light of the particular location you are running the robot 
in, you might have to adjust the limiting value of the light sensor (I have chosen 50).

When the light sensor recognizes a rotation of the helix, increment the motor power by adding 
1 to the motorPower variable. As the variable’s output is connected to the motor block’s power input 
port, the motor will run with the incremented power from then on (Figure 6-42).



264 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Figure 6-42. Incrementing the motor power

When the motor power is at its maximum of 100%, you need to run the motor forever. As you 
know, this is achieved by adding a forever loop with a contained motor block at the end of the program. 

And you are done. Figure 6-43 shows the complete NXT-G program for the aerial screw.

Figure 6-43. The complete NXT-G program for the aerial screw

RobotC
To program the aerial screw with RobotC, you use the light sensor attached to port 3:

// use the light sensor connected to port 3
const tSensors lightSensor = (tSensors) S3;

// main
task main() {
}

Define a variable that holds the present rotation speed (i.e., the present motor power):

. . .
// main
task main() {

  // define a variable that holds the present rotation speed
  // initial value is 20
  int rotationSpeed = 20;
}

Now rotate until the rotation speed is at its maximum:

. . .



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 265

task main() {

  . . .
  int rotationSpeed = 20;

  // loop until rotation speed is maximum (100)
  while(rotationSpeed < 100) {

  }
}

Run the motor with the actual power (which determines the rotation speed of the helix) until the 
light sensor detects the passing grip of the spill:

. . .
task main() {

  . . .
  while(rotationSpeed < 100) {

    // loop until light sensor detects the passing spill grip
    do {

      // run the helix's motor with constant speed
      motor[motorA] = rotationSpeed;
  
      // check light sensor
    } while(SensorValue(lightSensor) >= 50);
  }
}

Upon detection by the light sensor, you increment the rotation speed:

. . .
task main() {

  . . .
  while(rotationSpeed < 100) {

    // loop until light sensor detects the passing spill grip
    do {
      . . .
    } while(SensorValue(lightSensor) >= 50);

    // the grip has passed the light sensor
    // hence we increment the rotation speed
    rotationSpeed = rotationSpeed + 1;
  }
}

At the end of the outer loop, the rotation speed will be at its maximum, so you run the motor 
with constant maximum power henceforth:

. . .



266 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

task main() {

  . . .
  while(rotationSpeed < 100) {
    . . .
  }

    // rotation speed is maximum now
    // so we run the helix with constant motor power
    // until user stops the program manually
    while(true) {
      motor[motorA] = 100;
    }
}

Here’s the complete RobotC program for the aerial screw:

// use the light sensor connected to port 3
const tSensors lightSensor = (tSensors) S3;

// main
task main() {

  // define a variable that holds the present rotation speed
  // initial value is 20
  int rotationSpeed = 20;

  // loop until rotation speed is maximum (100)
  while(rotationSpeed < 100) {

    // loop until light sensor detects the passing spill grip
    do {

      // run the helix's motor with constant speed
      motor[motorA] = rotationSpeed;
  
      // check light sensor
    } while(SensorValue(lightSensor) >= 50);

    // the grip has passed the light sensor
    // hence we increment the rotation speed
    rotationSpeed = rotationSpeed + 1;

  }

  // rotation speed is maximum now
  // so we run the helix with constant motor power
  // until the user stops the program manually
  while(true) {
    motor[motorA] = 100;
  }
}



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 267

NXC
The program code for NXC and for RobotC do not differ very much. The differences are shown here.

The light sensor attached to port 3 is configured using the following statement:

// enable NXC
#include "NXCDefs.h"

// main
task main(){

  // define sensor at port 3 to be a light sensor with active light
  SetSensorType(IN_3,IN_TYPE_LIGHT_ACTIVE);
}

Running the motor with the actual power (which determines the rotation speed of the helix) 
until the light sensor detects the passing grip of the spill looks like this in NXC:

. . .
task main() {

  . . .
  while(rotationSpeed < 100) {
    // loop until light sensor detects the passing spill grip
    do {

      // run the helix's motor with constant speed
      OnFwd (OUT_A, rotationSpeed);
  
        // check light sensor
    } while (Sensor(IN_3) >= 50);
  }
}

And here’s the final loop for running the motor with constant maximum power:

. . .
task main() {

  . . .
  while(rotationSpeed < 100) {
    . . .
  }

  // rotation speed is maximum now
  // so we run the helix with constant motor power
  // until user stops the program manually
  while(1) {
    OnFwd (OUT_A, 100);
  }
}

The complete NXC program for the aerial screw is as follows:

// enable NXC
#include "NXCDefs.h"



268 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

// main
task main(){

  // define sensor at port 1 to be a light sensor with active light
  SetSensorType(IN_3,IN_TYPE_LIGHT_ACTIVE);

  // define a variable that holds the present rotation speed
  // initial value is 20
  int rotationSpeed = 20;
   
  // loop until rotation speed is maximum (100)
  while (rotationSpeed < 100) {
    // loop until light sensor detects the passing spill grip
    do {
      // run the helix's motor with constant speed
      OnFwd (OUT_A, rotationSpeed);
      // check light sensor
    } while(Sensor(IN_3) >= 50);

    // the grip has passed the light sensor
    // hence we increment the rotation speed
    rotationSpeed = rotationSpeed + 1;
  }

  // rotation speed is maximum now
  // so we run the helix with constant motor power
  // until the user stops the program manually
  while(1) {
    OnFwd (OUT_A, 100);
  }
}

leJOS NXJ
As usual, start with a class AerialScrew that has a main() method and imports the lejos.nxt package:

package org.nxtdavinci.aerialscrew;

import lejos.nxt.*;

public class AerialScrew {

  public static void main(String[] args) throws Exception {

  }
}

Configure the light sensor:

. . .

public class AerialScrew {

  public static void main(String[] args) throws Exception {



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 269

    // configure the light sensor on input port 3
    LightSensor lightSensor = new LightSensor(Port.S3);

  }
}

and define the variable for the rotation speed, setting it to an initial value of 20: 

. . .

public class AerialScrew {

  public static void main(String[] args) throws Exception {

    // configure the light sensor on input port 3
    LightSensor lightSensor = new LightSensor(Port.S3);

    // define a variable that holds the present rotation speed
    // initial value is 20
    int rotationSpeed = 20;

  }
}

Next, you loop until the rotation speed is at maximum:

. . .

public class AerialScrew {

  public static void main(String[] args) throws Exception {

    . . .
    int rotationSpeed = 20;

    // loop until rotation speed is maximum (100)
    while (rotationSpeed < 100) {

    }
  }
}

Inside the loop, run the motor with the actual rotation until the light sensor detects the passing 
grip of the spill:

. . .

public class AerialScrew {

  public static void main(String[] args) throws Exception {

    . . .
    while (rotationSpeed < 100) {

      // set the power of the helix's motor to the rotation speed
      Motor.A.setSpeed(rotationSpeed);



270 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

      // loop until light sensor detects the passing spill grip
      do {
        
        // run the motor forward
        Motor.A.forward();

        // check the light sensor
      } while(lightSensor.readValue() >= 50);

    }
  }
}

Upon detection by the light sensor, you increment the rotation speed:

. . .

public class AerialScrew {

  public static void main(String[] args) throws Exception {

    . . .
    while (rotationSpeed < 100) {

      . . .
      do {
           
        // run the motor forward
        Motor.A.forward();

        // check the light sensor
      } while(lightSensor.readValue() >= 50);

      // increment the rotation speed
      rotationSpeed++;

    }
  }
}

When the rotation speed is at its maximum, run the motor with constant maximum power 
forever:

. . .

public class AerialScrew {

  public static void main(String[] args) throws Exception {

    . . .
    while (rotationSpeed < 100) {

      . . .
      // increment the rotation speed
      rotationSpeed++;



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 271

      // run the motor with maximum power
      Motor.A.setSpeed(100);

      while(true) {
        Motor.A.forward();
      }
    }
  }
}

This is the complete leJOS NXJ program for the aerial screw:

package org.nxtdavinci.aerialscrew;

import lejos.nxt.*;

public class AerialScrew {

  public static void main(String[] args) {

    // configure the light sensor on input port 3
    LightSensor lightSensor = new LightSensor(Port.S3);

    // define a variable that holds the present rotation speed
    // initial value is 20
    int rotationSpeed = 20;

    // loop until rotation speed is maximum (100)
    while(rotationSpeed < 100) {

      // set the power of the helix's motor to the rotation speed
      Motor.A.setSpeed(rotationSpeed);

      // loop until light sensor detects the passing spill grip
      do {

        // run the motor forward
        Motor.A.forward();

        // check the light sensor
      } while(lightSensor.readValue() >= 50);

      // increment the rotation speed
      rotationSpeed++;

      // run the motor with maximum power
      Motor.A.setSpeed(100);

      while(true) {
        Motor.A.forward();
      }

    }
  }
}



272 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

pbLua
The first thing to do for the pbLua program is to define the AerialScrew function:

-- function AerialScrew
function AerialScrew()

end

Next, configure the light sensor and the motor running the helix:

. . .
function AerialScrew()

  -- configure the light sensor on input port 3
  nxt.InputSetDigi0(3)
  nxt.InputSetDirOutDigi0(3)

  -- configure motor A to run in "brake" mode
  nxt.OutputSetMode(1,2)

end

You need to set the variable for the rotation speed to an initial value of 20: 

. . .
function AerialScrew()

  . . .
  -- configure motor A to run in "brake" mode
  nxt.OutputSetMode(1,2)

  -- define a variable that holds the present rotation speed
  -- initial value is 20
  local rotationSpeed = 20

end

Now loop until the rotation speed is at maximum:

. . .
function AerialScrew()

  . . .
  local rotationSpeed = 20

  -- loop until rotation speed is maximum (100)
  while rotationSpeed < 100 do

  end
end

Inside the loop, run the motor with the actual rotation until the light sensor detects the passing 
grip of the spill:

. . .
function AerialScrew()



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 273

  . . .
  -- loop until rotation speed is maximum (100)
  while rotationSpeed < 100 do

    -- set the power of the helix's motor to the rotation speed
    -- 32 means "run mode"
    nxt.outputSetSpeed(1, 32, rotationSpeed, 0)

    -- loop until light sensor detects the passing spill grip
    while nxt.InputGetRawAd(3) >= 50
      -- do nothing
    end
  end
end

Upon detection by the light sensor, you increment the rotation speed:

. . .
function AerialScrew()

  . . .
  -- loop until rotation speed is maximum (100)
  while rotationSpeed < 100 do

    . . .
    -- loop until light sensor detects the passing spill grip
    while nxt.InputGetRawAd(3) >= 50
      -- do nothing
    end

    -- increment the rotation speed
    rotationSpeed = rotationSpeed + 1

  end
end

Now the rotation speed is at its maximum and you may run the motor with constant maximum 
power until the user turns the program off:

. . .
function AerialScrew()

  . . .
  -- loop until rotation speed is maximum (100)
  while rotationSpeed < 100 do

    . . .

  end

  -- run the motor with maximum power
  nxt.outputSetSpeed(1, 32, 100, 0)

end



274 CH AP T E R  6   ■  T HE  AE R I A L SC R E W

Last but not least, you call the AerialScrew function in the program:

. . .
function AerialScrew()

  . . .

end

-- Now run the AerialScrew function 
AerialScrew()

The complete pbLua program for the aerial screw looks like this:

-- function AerialScrew
function AerialScrew()

  -- configure the light sensor on input port 3
  nxt.InputSetDigi0(3)
  nxt.InputSetDirOutDigi0(3)

  -- configure motor A to run in "brake" mode
  nxt.OutputSetMode(1,2)
  
  -- define a variable that holds the present rotation speed
  -- initial value is 20
  local rotationSpeed = 20

  -- loop until rotation speed is maximum (100)
  while rotationSpeed < 100 do

    -- set the power of the helix's motor to the rotation speed
    -- 32 means "run mode"
    nxt.outputSetSpeed(1, 32, rotationSpeed, 0)

    -- loop until light sensor detects the passing spill grip
    while nxt.InputGetRawAd(3) >= 50
      -- do nothing
    end

    -- increment the rotation speed
    rotationSpeed = rotationSpeed + 1

  end

  -- run the motor with maximum power
  nxt.outputSetSpeed(1, 32, 100, 0)
 
end

-- Now run the AerialScrew function 
AerialScrew()



CH AP T E R  6   ■  T HE  AE R I A L SC R E W 275

Summary
In this chapter, I introduced the first of this book’s two flying machines invented by Leonardo. If you 
completed the building instructions, you saw a possible way to mimic curved structures with LEGO 
parts and how to use turntables, great gear wheels, and axles for creating a stable hub. You also 
learned how to use and program the light sensor for detection.

In the next chapter, you will implement Leonardo’s second flying device, the renowned flying 
machine. You will also examine another topic that is of particular interest to the NXT robot builder: 
remote control.



277

■ ■ ■

C H A P T E R  7

The Flying Machine

There shall be wings! If the accomplishment be not for me, ‘tis for some other.

—Leonardo da Vinci

In this chapter you will build another one of Leonardo’s inventions intended for lifting man into the 
air: the flying machine. The subject of controlling a LEGO NXT robot with strings is revisited and you 
will learn about integrating the Brick with a rather fragile structure. Last but not least, this chapter 
deals with one of the most intriguing NXT topics: remote communication via Bluetooth.

Historical Background
Leonardo’s flying machine certainly is one of his most famous and most frequently displayed inven-
tions. It illustrates his approach toward human flight, using his studies on birds and insects. While 
his aerial screw, which you built in the previous chapter, follows the movement of objects in water, 
the flying machine mimics a bird’s way of flying.

Leonardo’s studies of flight were most likely the most scientific up to that point in time. Flying 
was a lifelong dream of Leonardo; in 1505, he reported that a bird visiting him in his cradle was one 
of his first childhood memories.

The draft for the flying machine was produced around the same time as the aerial screw at the 
end of the 1480s and is contained in the same Manuscript B codex. It’s basically an ornithopter, a 
flying contraption driven by birdlike flexible wings; indeed, Leonardo often referred to it as “the great 
bird” (Figure 7-1).

One of the interesting things about the flying machine is the fact that the pilot does not use his 
arms for powering it; instead, the wings are moved by a man’s feet, which push two pedals connected 
to the wings by a sophisticated system of cables. There is a complete lack of steering devices, which 
was also true of the armored car. It is conceivable that Leonardo meant to tackle that issue once the 
challenge of making the machinery fly was resolved.

But the flying machine would have been much too heavy to actually lift into the air. It seems 
Leonardo may not have been aware of this problem; he even considered a test flight over a lake. To 
prevent the pilot from drowning, though, he intended to supply the contraption with inflated skins. 
Maybe he was deterred by the fate of his contemporary Giovanni Battista Danti who reportedly tried 
to fly in a similar device over the Umbrian Lake Trasimeno and died when he crashed into the roof 
of a church.



278 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-1. Leonardo’s drawing of the flying machine

As noted in Chapter 6, Leonardo was convinced of the fundamental similarity of the mechanical 
basics of man and animal and the ability of humans to reproduce a bird’s way of flying. “A bird is an 
instrument according to mathematical law, which instrument it is within the capacity of man to 
reproduce with all its movements,” he stated. Hence, the idea of building an “artificial bird” powered 
by a man’s extremities was clearly on track.

Hardware Challenges
No doubt the central issue when building the flying machine with LEGO parts is the wings. In partic-
ular, the elastic connections Leonardo used to allow the wings to rotate and bend impose special 
challenges to the LEGO designer. The LEGO replacements have to not only be flexible and stable, but 
also must not hinder the complex overall movement of the wing.

For this challenge, I use a turntable for the rotational movement (Figure 7-2).



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 279

Figure 7-2. The wing implemented with LEGO

Another critical point is the propulsion of the wings. Originally, Leonardo designed two pedals 
stepped on alternately by the pilot. Over a sophisticated system of attached wires the wings were set 
into a complex movement. I’ve kept the wires but replaced the pedals with two winches that are each 
driven by a motor (Figure 7-3).

Figure 7-3. The propulsion of the wings implemented with LEGO parts



280 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

However, I have not abandoned the pedals. You will create a remote control by which you will 
be able to drive the wings with your feet, thus adopting the place of the pilot. This is explained later 
in the section on building the remote control.

Building the Flying Machine
Figure 7-4 shows the completed flying machine robot.

Figure 7-4. The completed flying machine robot

The following images show step-by-step instructions on how to build the flying machine.



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 281

Figure 7-5. Building the flying machine: step 1



282 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-6. Building the flying machine: step 2



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 283

Figure 7-7. Building the flying machine: step 3



284 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-8. Building the flying machine: step 4



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 285

Figure 7-9. Building the flying machine: step 5 (rotate model)



286 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-10. Building the flying machine: step 6



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 287

Figure 7-11. Building the flying machine: step 7



288 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-12. Building the flying machine: step 8



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 289

Figure 7-13. Building the flying machine: step 9



290 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-14. Building the flying machine: step 10



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 291

Figure 7-15. Building the flying machine: step 11



292 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-16. Building the flying machine: step 12



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 293

Figure 7-17. Building the flying machine: step 13



294 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-18. Building the flying machine: step 14



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 295

Figure 7-19. Building the flying machine: step 15 (rotate model)



296 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-20. Building the flying machine: step 16



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 297

Figure 7-21. Building the flying machine: step 17



298 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-22. Building the flying machine: step 18



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 299

Figure 7-23. Building the flying machine: step 19



300 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-24. Building the flying machine: step 20 (rotate model)

Figure 7-25. Building the flying machine: step 21



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 301

Figure 7-26. Building the flying machine: step 22

Figure 7-27. Building the flying machine: step 23 (rotate model)



302 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-28. Building the flying machine: step 24

Figure 7-29. Building the flying machine: step 25



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 303

Figure 7-30. Building the flying machine: step 26

Figure 7-31. Building the flying machine: step 27



304 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-32. Building the flying machine: step 28

Figure 7-33. Building the flying machine: step 29



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 305

Figure 7-34. Building the flying machine: step 30

Figure 7-35. Required parts for the flying machine



306 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

The Wires That Lower the Wings
The following steps show how to wire the wings to the winches in order to lower them. Note that you 
will have to repeat these steps for each wing:

1. Take a strong sewing thread and tie it to the middle of the outer beam of the wing. Pass it 
through the double split axle joiner, then through the inner hole of the turntable, and finally 
through the axle joiner at the wing’s apron. Next, pass that wire through the two four-pinned 
axle joiners at the end of the pilot’s seat and tie it to the outer rim of the lower right gear at the 
stern of the flying machine. This wire folds the wing and is illustrated by the thick black line 
in Figure 7-36.

2. Take a second thread and fix it to the 15-holed beam of the wing, between the L-shaped 
beams that connect it to the turntable and the double bent lift arm. Pass it through the 
down-pointing axle joiner below, through the two four-pinned axle joiners at the end of the 
pilot’s seat, and tie it to the outer rim of the lower right gear at the stern of the flying machine. 
This wire lowers the wing and is illustrated by the dotted and slashed line in Figure 7-36.

3. Finally, take another thread and tie it to the end of the double-bent lift arm that is pointing 
down from the wing. Pass it straight through the two four-pinned axle joiners at the end 
of the pilot’s seat and fix it at the outer rim of the lower right gear at the stern of the flying 
machine. This wire rotates the wing in an upward direction and is illustrated by the dotted 
black line in Figure 7-36.

Figure 7-36. The wires that lower the wings

Be sure to align the wires’ length so that they are completely taut when the wings are fully lowered 
(Figure 7-37). They are taut when the right winch (when viewing the flying machine from behind) has 
coiled the wires for two complete rotations, turning in a clockwise direction.



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 307

Figure 7-37. The position of the wires when the wings are completely lowered

The Wires That Lift the Wings
The following steps show how to place the wires to lift the wings. Again, the steps have to be 
performed for each wing:

1. Take a strong sewing thread and tie it to the outer end of the 11-holed opposite beam of the 
wing. Pass it through the up-pointing axle joiner below, and through the two four-pinned 
axle joiners at the end of the pilot’s seat, and tie it to the outer rim of the lower left gear at the 
stern of the flying machine. This wire lifts the wing and is illustrated by the thick black line in 
Figure 7-38.

2. Take a second thread and fix it to the end of the outer beam of the wing. Pass it through the 
pole located at the end of the 7-holed beam, through the double split axle joiner, and through the 
inner hole of the turntable. Finish that wire by threading it through the axle joiner at the wing’s 
apron and through the two four-pinned axle joiners at the end of the pilot’s seat, and tie it to 
the outer rim of the lower left gear at the stern of the flying machine. This wire unfolds the 
wing and is illustrated by the dotted black line in Figure 7-38.

3. Finally, tie a third thread to the end of the double-bent lift arm that is pointing down from 
the wing. Pass it through the up-pointing axle joiner below, and through the two four-pinned 
axle joiners at the end of the pilot’s seat, and tie it to the outer rim of the lower left gear at the 
stern of the flying machine. This wire rotates the wing in a downward direction and is illus-
trated by the dotted and slashed line in Figure 7-38.



308 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-38. The wires that lift the wings

Be sure to align the wires’ length so that they are completely taut when the wings are fully lifted 
(Figure 7-39). They are taut when the left winch (when viewing the flying machine from behind) has 
coiled the wires for two complete rotations, turning in a counterclockwise direction.

Attach the ends of the wires to the outer rim of the winches as shown in Figure 7-36. Make sure 
that the wires are long enough to allow for two full rotations of the winches in each direction.

Note that in the previous figures, only the wiring for one wing is displayed. The other wing is 
wired analogously.



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 309

Figure 7-39. The position of the wires when the wing is completely lifted

Building the Remote Control
To enable you to take the place of the pilot and actually control the flying machine with your feet as 
Leonardo intended, you will build a pedal-based remote control for the robot (Figure 7-40). You will 
also see how to use Bluetooth communication between two NXT Bricks in NXT programs.

Figure 7-40. The completed remote control for the flying machine



310 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

The images (Figures 7-41 through 7-52) show step-by-step instructions on how to build the 
remote control for the flying machine.

Figure 7-41. Building the remote control for the flying machine: step 1



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 311

Figure 7-42. Building the remote control for the flying machine: step 2



312 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-43. Building the remote control for the flying machine: steps 3 (rotate model) and 4

Figure 7-44. Building the remote control for the flying machine: step 5



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 313

Figure 7-45. Building the remote control for the flying machine: step 6

Figure 7-46. Building the remote control for the flying machine: step 7



314 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-47. Building the remote control for the flying machine: step 8

Figure 7-48. Building the remote control for the flying machine: step 9



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 315

Figure 7-49. Building the remote control for the flying machine: step 10



316 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-50. Building the remote control for the flying machine: step s 11 (rotate model) and 12



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 317

Figure 7-51. Building the remote control for the flying machine: step 13

Figure 7-52. Required parts for the flying machine robot

The pilot works the remote control by alternately pushing the pedals down with his feet. Attach 
the motor’s cable to port C.



318 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Programming the Flying Machine
To program the flying machine, you need two programs: one running on the flying machine itself 
and one on the remote control. The program running on the remote control checks the input from 
the pedals moved by the pilot’s feet and sends the information to the flying machine (Figure 7-53).

Figure 7-53. The remote control program’s flow

The program running on the flying machine itself receives the messages and drives the winches 
appropriately (Figure 7-54).

You will use an internal variable to hold the wings’ state. Note that alternatively you could hold 
this state on the remote control instead; but this is more unreliable since the remote control would 
not know of any hardware failures that might occur during the wings’ movement. Furthermore, it 
would require sending at least two different types of Bluetooth messages: “lift wings” and “lower wings.”



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 319

Figure 7-54. The flying machine program’s flow

LEGO MINDSTORMS NXT Software
In this section, you will program both the flying machine and the remote control with NXT-G. Once 
the two Bricks are connected via Bluetooth, you will start both programs, lower the wings, and start 
performing the pilot’s job. Happy pedaling!

The Remote Control’s Program

The program on the remote control starts with a forever loop and contains logic for waiting for the 
pilot to move the pedals, which boils down to checking for rotations of the attached motor. For that, 
you use a wait block configured by the rotation sensor that every motor has built-in (Figure 7-55). 
The wait block will pause the program until the motor is rotated forward by at least 30 degrees, a 
value that corresponds to lowering the pedal to the right side.



320 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-55. The remote control programmed with NXT-G: waiting for the pedal’s motor to be 
rotated forward

Next, you simply send the arbitrary numerical value 42 by a Bluetooth message, using a send 
message block (Figure 7-56).

Figure 7-56. Sending a Bluetooth notification

The program also has to recognize the lowering of the pedal on the other side. Since the wait 
block does not allow for logical OR statements, you can’t use the one already placed in the program 
for both directions. Instead, you place a second one after the first notification, configured to wait 
until the motor has rotated at least 30 degrees backward (Figure 7-57).1

1. You could use two concurrent threads instead of the sequential logic here, but that topic is not covered in 
this book.



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 321

Figure 7-57. Waiting for the pedal’s motor to be rotated backward

Sending a Bluetooth notification again completes the program (Figure 7-58).

Figure 7-58. The complete program of the remote control programmed with NXT-G 

The Flying Machine’s Program

On the flying machine, start with defining a logical variable called wingsUp and initialize it with False 
(Figure 7-59).



322 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-59. The flying machine programmed with NXT-G: initializing the internal state variable

Next, using a wait block, wait for Bluetooth notifications from the remote control (Figure 7-60).

Figure 7-60. Waiting for a notification from the remote control

When the message comes in, you have to check the state variable and switch it according to its 
value (Figure 7-61).



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 323

Figure 7-61. Switching according to the internal state

If the wings are up, lower them by running the two motors appropriately and setting the internal 
state variable wingsUp to False (Figure 7-62).

Figure 7-62. Lowering the wings

If the wings are down, lift the wings and set the internal state variable to True. Figure 7-63 shows 
the complete program.



324 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Figure 7-63. The complete flying machine program with NXT-G

NXC
At the time of this writing, among the programming environments addressed in this book, only NXT-G 
and NXC supported inter-Brick Bluetooth communication. Therefore, NXC is the final program-
ming environment described for the remote control and the flying machine.

The Remote Control’s Program

At the beginning of the program check whether the NXT Brick on the flying machine is connected 
via Bluetooth:

// enable NXC
#include "NXCDefs.h"

// main
task main() {

  // check connection of the flying machine's NXT Brick
  // on connection 1
  // display error and stop if no connection is available
  if(!(BluetoothStatus(1)!=NO_ERR)) {
    TextOut(5,LCD_LINE2,"no conn");
    Wait(2000);
    Stop(true);
  }
}

The first thing to do in the forever loop is to reset the internal rotation sensor:



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 325

. . .
task main() {

  // check connection of the flying machine's NXT Brick
  . . .

  // program shall run until user turns it off
  while(true) {

    // reset the internal rotation sensor of motor C
    ResetAllTachoCounts(OUT_C);

  }
}

Now wait for the user to push down the pedal:

. . .
task main() {

  . . .
  while(true) {

    // reset the internal rotation sensor of motor C
    ResetAllTachoCounts(OUT_C);

    // we wait for the user pushing down the pedal
    // corresponds to the motor turning at least 30 degrees
    // in an arbitrary direction
    while(!abs(MotorRotationCount(OUT_C))) {
      // do nothing
    }

  }
}

Once the user pushes down the pedal, you send an appropriate Bluetooth message:

. . .
task main() {

  . . .
  while(true) {

    . . .
    while(!abs(MotorRotationCount(OUT_C))) {
      // do nothing
    }

    // now we send an appropriate message via Bluetooth
    string message = "42";
    SendRemoteString(1,1,message);

  }
}



326 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

This is the complete NXC program for the remote control:

// enable NXC
#include "NXCDefs.h"

// main
task main() {

  // check connection of the flying machine's NXT Brick
  // on connection 1
  // display error and stop if no connection is available
  if(!(BluetoothStatus(1)!=NO_ERR)) {
    TextOut(5,LCD_LINE2,"no conn");
    Wait(2000);
    Stop(true);
  }

  // program shall run until user turns it off
  while(true) {

    // reset the internal rotation sensor of Motor C
    ResetAllTachoCounts(OUT_C);

    // we wait for the user pushing down the pedal
    // corresponds to the motor turning at least 30 degrees
    // in an arbitrary direction
    while(!abs(MotorRotationCount(OUT_C))) {
      // do nothing
    }

    // now we send an appropriate message via Bluetooth
    string message = "42";
    SendRemoteString(1,1,message);
  }
}

The Flying Machine’s Program

For the flying machine, start by checking the availability of the Bluetooth connection to the remote 
NXT Brick and define an internal variable that holds the state of the wings:

// enable NXC
#include "NXCDefs.h"

// main
task main() {

  // check connection of the flying machine's NXT Brick
  // on connection 1
  // display error and stop if no connection is available
  if(!(BluetoothStatus(1)!=NO_ERR)) {
    TextOut(5,LCD_LINE2,"no conn");
    Wait(2000);
    Stop(true);
  }



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 327

  // internal state variable
  bool wingsUp = false;
}

Run the forever loop and wait for incoming Bluetooth messages from the remote control:

. . .
task main() {

  . . .
  // internal state variable
  bool wingsUp = false;

  // program shall run until user turns it off
  while(true) {

    // we wait for an incoming message from the remote control
    // on inbox 1
    string message;
    while(!ReceiveRemoteString(1,true,message)) {
    }

    // we are interested in messages from the remote control only
    if(StrToNum(message)!=42)
      continue;
  }
}

Once a message arrives, lower or lift the wings, depending on the value of the internal state 
variable:

. . .
task main() {

  . . .
  while(true) {

    . . .
    if(StrToNum(message)!=42)
      continue;

    // move wings according to the internal state
    if(wingsUp) {
      // lower wings
      moveWings(false);
    } else {
      // lift wings
      moveWings(true);
    }
    // switch state variable
    wingsUp = !wingsUp;

  }
}



328 CH AP T E R  7  ■  T HE  FL Y I N G  M AC HI N E

Note that you have used the moveWings() function. To define it at the beginning of the program, 
do the following:

// enable NXC
#include "NXCDefs.h"

// function for lowering or lifting the wings
sub moveWings(bool lift) {
  // run motors synchronized for 2 rotations (720 degrees)
  if(lift) {
    RotateMotorEx (OUT_BC, 50, 720, 100, true);
  } else {
    RotateMotorEx (OUT_BC, 50, 720, -100, true);
  }
}

// main
task main() {
  . . .
}

You have finished the NXC program for the flying machine:

// enable NXC
#include "NXCDefs.h"

// function for lowering or lifting the wings
sub moveWings(bool lift) {
  // run motors synchronized for 2 rotations (720 degrees)
  if(lift) {
    RotateMotorEx (OUT_BC, 50, 720, 100, true);
  } else {
    RotateMotorEx (OUT_BC, 50, 720, -100, true);
  }
}

// main
task main() {

  // check connection of the flying machine's NXT Brick
  // on connection 1
  // display error and stop if no connection is available
  if(!(BluetoothStatus(1)!=NO_ERR)) {
    TextOut(5,LCD_LINE2,"no conn");
    Wait(2000);
    Stop(true);
  }

  // internal state variable
  bool wingsUp = false;

  // program shall run until user turns it off
  while(true) {



C HA P TE R  7  ■  T H E  F L Y IN G  M AC H IN E 329

    // we wait for an incoming message from the remote control
    // on inbox 1
    string message;
    while(!ReceiveRemoteString(1,true,message)) {
    }

    // we are interested in messages from the remote control only
    if(StrToNum(message)!=42)
      continue;

    // move wings according to the internal state
    if(wingsUp) {
      // lower wings
      moveWings(false);
    } else {
      // lift wings
      moveWings(true);
    }
    // switch state variable
    wingsUp = !wingsUp;

  }
}

Summary
In this final LEGO NXT robot implementation of an invention of Leonardo da Vinci, you built fragile 
structures and integrated the NXT Brick into them. You also deepened your knowledge of controlling a 
robot with strings, implementing a system of wires and counterwires that interact in a rather 
complex way.

You also made acquaintance with the fascinating topic of the communication of two NXT Bricks 
via Bluetooth. This enables you to control the robot remotely from another Brick.

With the knowledge you’ve gained in this and the previous chapters, you will now be able to 
build and program pretty complex and capable NXT robots. Most likely, you will have also decided 
which of the programming environments you feel most at home with. If all this has gingered you up 
to further indulge in more of the hardware and software aspects of the NXT universe, the following 
chapter presents possible next steps. 



331

■ ■ ■

C H A P T E R  8

Outlook: What NXT?

Life is pretty simple: you do some stuff. Most fails. Some works. You do more of what works.
If it works big, others quickly copy it. Then you do something else. The trick is the doing
something else.

—Leonardo da Vinci

Now that you have completed this tour through some of Leonardo’s most impressive inventions, 
built them with LEGO parts, and programmed them using five different environments, you might 
want to take a break, step back, and admire Leonardo’s genius—and perhaps feel some satisfaction 
for your own creations. However, since you are a member of a community bustling with creative 
spirit, you may also want to look toward the future and ask yourself “what NXT?” With the robots 
you’ve already made, where can you go from here? 

Enhancing the Five Robots
The first thing that comes to mind when thinking about further steps is refining and enhancing the 
creations you have been working on. When building, programming, and testing them, you certainly 
will not only notice weaknesses and ways to optimize certain features, but you will probably also get 
ideas on how to accomplish some tasks in a completely different way and think about additional 
capabilities of the machine in question. Ideally, you will even be able to advance Leonardo’s original 
designs, standing “on the shoulders of a giant and thus seeing farther than him.” In the next few 
sections, I introduce some topics that have occurred to me. You might have also thought of others.

The Armored Car
The most noticeable drawback of the armored car is that it’s stone blind: it just rolls forward forever 
without noticing anything that happens around it. But you can give it the capability to detect things 
in front of it, that is, in the driving direction.

The means to do so is an ultrasonic sensor, best placed in the turret, looking forward. If you 
adjust it pointing slightly downward, it can detect objects located ahead pretty reliably. You would 
change the program so that once the sensor detects something, the armored car would stop and 
perform some action. For an example on how to implement this, see the programming section of 
Chapter 5 on the revolving bridge. You could program it to fire a gun pointing forward. That would 
be rather impressive, wouldn’t it? 



332 CH AP T E R  8  ■  O U TL O O K :  W H AT  N X T ?

To accomplish this, a third motor and a device that mimics a gun capable of firing a ball are 
required. Fortunately, such a device exists in the LEGO universe: the Zamor shooter from the LEGO 
BIONICLE Piraka series. Brian Davis, a member of the MDP, has already shown how to use it in 
connection with a NXT; see his DAZLR (Dual Action Zamor Launching Robot) on the official LEGO 
MINDSTORMS NXT community site (http://mindstorms.lego.com/MeetMDP/BDavis.aspx). 
However, integrating the shooter and the third motor into the existing armored car’s frame without 
messing up the cover and preserving the elegant symmetric design might prove to be a pretty tough 
challenge.

Lastly, you could make the armored car capable of moving around in all directions, not just 
forward. This is something that goes beyond Leonardo’s original design, where no means of steering 
is shown. It could be achieved by attaching the front wheels to some sort of moveable axis and recon-
figuring the two drive motors in a way that one drives the rear wheels and the other operates the 
front axis. 

The Catapult 
In the catapult, the mechanism that switches the crank to and away from the great gear wheel is not 
as reliable as it could be. In particular, in the end phase of loading the catapult, that is, when the 
force on the gear wheel and therefore on the crank mechanism that blocks the wheel is very strong, 
the worm gear tends to loosen its grip and drop away slightly. As a consequence, you may encounter 
premature launching of the catapult when it’s not fully loaded, resulting in inadequate shooting 
ranges. To fix this, you could use a device-driven second motor that lowers or lifts the worm gear 
from above, preventing the worm gear from undesired dropping away.

Another feature that comes to mind for the catapult is some sort of device that automatically 
provides projectiles once the arm is sufficiently lowered, in other words, a magazine. It should be 
able to deliver exactly one ball to the arm when the first touch sensor detects the complete loading 
of the catapult.

The Revolving Bridge
The revolving bridge is programmed to move away once the ultrasonic sensor detects an advancing 
object, and to move back when the object has passed. Currently, this action depends on dead reck-
oning; the two motors that drive the winches are run for a certain number of rotations. Yet, dead 
reckoning is not known to be the best of all strategies in robotics. Because the program does not 
check the robot’s inner (reckoned) state against the actual physical state, small deviations in the 
motors’ performance or other hardware failures will eventually create a noticeably different condi-
tion than what the program thinks the robot is in. For instance, imagine if some unforeseen obstacle 
in the river blocks the bridge’s movement, or, even worse, one of the ropes breaks. The program would 
still assume the bridge is completely swung back when it really isn’t. All the subsequent actions would 
also be inaccurate since there are no fallback mechanisms to detect such failures, let alone to recover 
from them. 

A possible solution is to use two touch sensors mounted at the two endpoints of the bridge’s far-
side end—one located on the back of the winch, the other at the far-side base on the opposite bank. 
You would change the program to no longer rely on a fixed number of motor rotations but on touch 
events from the referring sensors to make sure the bridge completes its swing.



CH A PT E R  8  ■  O U TL O O K :  WH A T  N XT ? 333

Last but not least, the revolving bridge is not able to distinguish between enemies and friends 
approaching on the far side; it will swing away in any case. It goes without saying that this is not 
always the desired action; it’s the purpose of a bridge to allow the right people to cross the river. 
Therefore, a means for the bridge’s operator to swing back the bridge when it’s reasonable, or to 
completely disable the swinging mechanism for some time, is required. A touch sensor that could 
serve as some sort of button for manual activation or deactivation could provide this kind of capability.

The Aerial Screw
In the aerial screw you used a light sensor sunk into its floor to count rotations of the central hub. 
However, these values are not very reliable, in particular, at higher rotation speeds. Instead you 
could count the rotation programmatically using the internal tachometer of the NXT motor. You 
could replace the light sensor with a touch sensor that is coupled to a nipple that projects into the 
plane of rotation of the hub’s grips and gets bent by each revolution.

The Flying Machine
In the flying machine, to hold the information on the internal state of the wings, you use a simple 
logical variable in the flying machine’s program. However, this is error-prone; its value is set after 
the appropriate function to lift or lower the wings is processed. If some hardware issue occurs that 
prevents the wings from moving as planned, the program will not notice. Like the dead reckoning of 
the revolving bridge, this may lead to an inconsistency where the internal representation of the robot 
in the program does not match the actual state of the flying machine’s wings. Hence, it would be 
advisable to retrieve the information on that state by a more reliable mechanism, for instance, by 
touch sensors placed appropriately at the endpoints of the wings’ movement.

Furthermore, you will notice that Bluetooth messages that are sent from the remote control 
to the flying machine while the wings are actually moving are simply ignored. This means the pilot 
might have to repeat his movements. 

You might want to enhance the programs and the hardware in a way that either blocks the pedals 
while the wings are lowered or lifted, or that subsequently queues and processes the movements by 
the pilot.

Remotely Controlling the Robots
The programs for the first four robots run on the Brick and do not require external control, making 
the robots autonomous, as robots should be. Yet, as you saw in Chapter 7 on the flying machine, on 
some occasions it is desirable or even necessary to have the ability to control the robot remotely by 
a program running somewhere other than on the Brick—for instance, for testing or for outsourcing 
tasks that can’t be accomplished by the Brick due to its memory limitations. This other location might be 
another Brick or any other Bluetooth-enabled device, including a cell phone or, most common, a 
computer. 

Note that although the logical control flow is run on the external device, both approaches never-
theless require a small program that runs on the Brick and processes the commands it receives from 
the controller. Such a program is rather simple and is confined to translating the control commands 
to actuate the hardware periphery appropriately.



334 CH AP T E R  8  ■  O U TL O O K :  W H AT  N X T ?

Unlike for the RCX, there’s currently no ready-made hardware remote control available for the 
NXT. Yet, implementations of such a device can be built based on a second NXT. While the NXT can 
run the attached motors on different power levels, it is also able to read the actual state of them, in 
particular, the number of degrees they have rotated. As you can manually move the axis pulled into 
a motor, you can use such a motor as some kind of rotation sensor and therefore build a remote 
control axis on top of it, similar to a joystick. The NXT Brick just serves as an evaluator of this sort of 
input, and a decent program of yours running on the Brick might take this input, interpret it appro-
priately, and eventually send the desired commands via Bluetooth to the robot you want to control. 
Together with touch or light sensors, any complex kind of remote control might be created this way.

Not surprisingly, some people in the community have already done this. The official LEGO 
MINDSTORMS NXT community site has information on Brian Davis’s BTRC (BlueTooth Remote 
Control). Another pretty advanced one is that of Steve Hassenplug, another prominent member of 
the MDP. His remote control can also be found on the LEGO MINDSTORMS NXT community site: 
http://mindstorms.lego.com/MeetMDP/SteveH.aspx. Particularly remarkable is the NXT Joystick 
created by MDP member Philo. The page, http://philohome.com/nxtjoystick/joystick.htm, even 
contains building instructions.

Remote controls based on software open the door to the (virtually) unlimited memory space 
of today’s computers and to a universe of additional programming environments. Any language that 
is able to support USB or Bluetooth communication may be used to control a NXT robot remotely. 
With the release of the Bluetooth Developer Kit (BDK) by LEGO in late 2006, implementation of such 
language support has become even easier. As a result, a multitude of different systems for remotely 
controlling the NXT Brick exist for a large variety of programming languages, ranging from object-
oriented, high-level platforms such as Java and C# to scripting languages such as Perl and Python. 
The page http://www.teamhassenplug.org/NXT/NXTSoftware.html provides a good overview of NXT 
remote programming software. One of the most promising and already quite powerful candidates is 
Microsoft’s Robotics Studio, based on a sophisticated service-oriented architecture that is decoupled 
from the actual technical platform the robot is running on. For further reading, see http://msdn.
microsoft.com/robotics/getstarted/default.aspx.

There are also some applications that target the mobile sector, including the NXT Mobile 
Application by LEGO that is downloadable at http://mindstorms.lego.com/Overview/
Mobile%20Application.aspx and enables you to control your NXT robot with cell phones produced 
by a variety of different vendors.

After you apply this to your da Vinci LEGO robots, a possible next step might be to implement a 
set of applications that allow you to control them remotely.

Making Other Inventions of Leonardo with LEGO
In addition to refining the five robots introduced in this book, you might want to recreate some of 
Leonardo’s other inventions with LEGO. And indeed, there are an abundance of interesting machines 
that would be very worthwhile to bring into the LEGO universe. Two that I find appealing are the 
theater stage for Orpheus (described in Chapter 1) and the canal excavation machine. For other 
ideas, you can get inspiration from the resources mentioned in the next section. 



CH A PT E R  8  ■  O U TL O O K :  WH A T  N XT ? 335

The Theater Stage for Orpheus
This draft of a theater stage set for the popular myth of Orpheus is made up of two hemispheres that 
can be opened, closed, and rotated to allow spectators to see the scenes in a circular movement 
(Figure 8-1).

Figure 8-1. The theater stage set

The challenges are the revolving spheres and the elevator, and how to add sound and light effects as 
well as programmatically tune the interaction of all the components.

The Canal Excavation Machine
During the course of his various occupations related to hydraulic engineering, Leonardo invented 
various devices to facilitate and accelerate his projects. One of these is a very large canal excavation 
machine (Figure 8-2).It is a sophisticated system of tracks, ropes, and weights intended to work on 
three different levels concurrently and to be operated by two gangs of workers. Many procedures 
that this sort of hydraulic work required could be automated with this digger that could easily move 
forward. 

Leonardo’s unusually detailed and refined drawing gives rise to the presumption that the draft 
was intended to be presented to a possible customer.



336 CH AP T E R  8  ■  O U TL O O K :  W H AT  N X T ?

Figure 8-2. The canal excavation machine

Recommended Web Sites
There’s a wealth of information available on the Web on Leonardo da Vinci and LEGO MINDSTORMS. 
This section presents some sites that I find particularly interesting and worthwhile to visit.

Web Sites on Leonardo da Vinci
The number of web sites on Leonardo is legion. The following are some of my favorites.

Universal Leonardo

Universal Leonardo (http://www.universalleonardo.org) is a project that aims to radically extend 
public understanding and appreciation of the deep unity and extraordinary diversity of Leonardo 
da Vinci’s work in all his fields of endeavor, as the site states. It presents European exhibitions on 
Leonardo and his works. It also contains many different sections on Leonardo’s life, his inventions, 
and his other works. Among other things, you can inspect his drawings, manuscripts, and paintings; 
learn about the different occupations of Leonardo’s life; play games; and dig through a bibliography. 
In a nutshell, you can spend hours on this site, which is presented in a very appealing way.



CH A PT E R  8  ■  O U TL O O K :  WH A T  N XT ? 337

Leonardo3

Leonardo3 (http://www.leonardo3.net) is the official web site of the Leonardo3 exhibition in Milan, 
a project that is particularly dedicated to the visualization of Leonardo’s work in three dimensions. 
Its intention is to create virtual reconstructions of the environments, objects, instruments, and labo-
ratories in which some of the most significant ideas in the history of technology were conceived and 
developed, as the site states. Consequently, there’s a wealth of magnificent images of Leonardo’s 
inventions on the site, most of them based on computer graphics. Yet, the real experience is visiting 
the exhibition itself, with all its real models and interactive devices; so if you’re in northern Italy, 
check it out. 

Wikipedia

There’s a lot of material on Leonardo da Vinci available on Wikipedia, the free online encyclopedia 
(http://en.wikipedia.org/wiki/Leonardo_da_Vinci). Not surprisingly, the most comprehensive 
content can be found in the Italian edition, where you can spend days just following the links provided. 
Yet, for those of us who have not mastered the Italian language, the English version is almost similar 
in scope and content.

And don’t forget: Wikipedia depends on the collaboration of its readers. If you have something 
worthwhile to contribute, don’t hesitate to add it to the site.

Sites on LEGO MINDSTORMS NXT
I already touched on some LEGO sites in Chapter 1, so I list those here without discussing them 
in depth. 

LEGO.com MINDSTORMS NXT

The LEGO.com MINDSTORMS NXT site (http://mindstorms.lego.com) is the official home of 
MINDSTORMS NXT on the Web. It is published by LEGO and contains everything that’s related 
to NXT, including LEGO’s support for it: technical information, software, the NXT-related web 
communities set up by LEGO, books, videos, and press announcements.

LEGO.com MINDSTORMS NXTLOG

LEGO.com MINDSTORMS NXTLOG (http://mindstorms.lego.com/nxtlog) is the place for you to share 
and archive your LEGO MINDSTORMS NXT projects and get inspiration from the MINDSTORMS 
NXT community. The NXTLOG is an administrated repository of NXT robots where anyone can publish 
their own creations and comment on other creations. At the time of this writing, NXTLOG hosted 
more than 2,000 different projects. It’s a tremendous source of inspiration.

LEGO Education

LEGO Education (http://www.legoeducation.com) is a joint venture between the company Pitsco 
Inc. and the educational division of the LEGO Group. LEGO is committed to the educational sector, 
in particular in the United States, and actively endorses the usage of its kits in schools and universities. 
This squares with the fact that a special educational version of the NXT kit has been developed.



338 CH AP T E R  8  ■  O U TL O O K :  W H AT  N X T ?

LEGO Education “combines the motivational advantages of LEGO Education sets with award-
winning software and standards-based activity packs that integrate math, science, and technology 
into engaging hands-on classroom projects,” as stated in the site’s About Us section. The site offers 
a lot of material for these purposes, such as teaching materials, a blog, and, quite interestingly for 
noninstructors, a store where you can buy a variety of NXT-related stuff.

The NXT STEP

The NXT STEP (http://thenxtstep.blogspot.com) is a blog dedicated to the NXT and related robotics 
topics that was founded by MCP member James Kelly in summer 2006. Today, around a dozen 
contributors write for the blog; I have the honor to be one of them. 

The NXT STEP certainly has become one of the (if not the) most popular LEGO blogs, with more 
than 30,000 visitors per month. This success is a result of its very active posting and commenting as 
well as the high level of quality and in-depth knowledge provided there. It’s one of the two blogs that 
are listed on LEGO’s official MINDSTORMS NXT site.

nxtasy.org

nxtasy.org (http://nxtasy.org) is one of the first online forums for NXT-related topics and most 
likely is presently the largest one. No doubt its founders Guy Ziv and Eric Salinas, supported by some 
rather prominent contributing members of the LEGO community, have succeeded in their self-set 
goal of being “a source of news and knowledge exchange for LEGO MINDSTORMS NXT users all 
over the world.” 

Aside from various subsections of the forum with presently almost 1,000 registered members, 
there’s a blog, a repository of NXT robots, and a page of challenges nxtasy.org arranges now and then.

This Author’s Site

My NXT-related site (http://mynxt.matthiaspaulscholz.eu) has proven to be not the most unpop-
ular one on the Web. You will find on this site a number of robots I’ve made as well as their building 
instructions, links to tools, other NXT-related sites and events, and, last but not least, a contact page 
that allows you to send messages to me. I usually try to respond as soon as possible to any question, 
suggestion, or wish from my readers. I am particularly obliged to my readers for feedback on this 
book. You can also find there media related to this book, such as pictures and videos of the robots, 
updates on the programs, and other materials. 

Recommended Books
Although the NXT was released less than one year ago, already books on the topic have been published. 
I introduce a selection of them in this section. Note that a list that is likely to be updated frequently 
can be found on the official LEGO MINDSTORMS NXT site at http://mindstorms.lego.com/Books.

LEGO MINDSTORMS NXT: The Mayan Adventure
Like the book you are now reading, LEGO MINDSTORMS NXT: The Mayan Adventure by Jim Kelly 
(Apress, 2006) is also from the Technology in Action series by Apress. Kelly is the operator of THE 
NXT STEP blog mentioned previously. The book is a perfect introduction to the NXT universe, in 
particular for younger readers since the technical details are clad in a suspenseful story of a young 
boy who experiences an adventure as part of an expedition into the Guatemalan jungle and solves 
the problems he encounters by building and refining five NXT robots. The step-by-step instructions 



CH A PT E R  8  ■  O U TL O O K :  WH A T  N XT ? 339

and the brainstorming techniques the book uses make it an ideal beginner’s guide for becoming 
familiar with the NXT kit and its programming environment. 

The LEGO MINDSTORMS NXT Idea Book
The LEGO MINDSTORMS NXT Idea Book: Design, Invent, and Build by the contributors of the NXT 
STEP blog (No Starch Press, 2007) contains nine different robots as well as a chapter on different 
theoretical topics related to the NXT. This book provides the reader with a great overview on the 
possibilities of the NXT kit, including the usage of NXT-G, the NXT programming language created 
by LEGO. 

Maximum LEGO NXT: Building Robots with Java Brains
Maximum LEGO NXT: Building Robots with Java Brains by Brian Bagnall (Variant Press, 2007) is 
written by one of the administrators of the leJOS project who has written large parts of the leJOS 
implementation for the NXT’s predecessor, RCX. He is also the author of various other books on 
LEGO MINDSTORMS. 

In this new book, he provides an overview of the NXT, introduces the leJOS Java platform—
alongside a crash course in common Java—and applies it to no less than 24 complete NXT projects. 
It’s a must for anyone who’s interested in programming the NXT with Java.

Leonardo’s Machines: Da Vinci’s Inventions Revealed
Leonardo’s Machines: Da Vinci’s Inventions Revealed by Domenico Laurenza, Mario Tadei, and 
Edoardo Zanon (David & Charles Publishers, 2006) was of particular help to me in creating the LEGO 
robots in this book. Written by three Italian engineers, this book is related to the Leonardo3 project 
mentioned previously and is a prodigious source of in-depth information on Leonardo’s inventions. 
What makes the book so very unique is the 3D computer graphics the authors have created based on 
Leonardo’s sketches: multitudes of high-resolution color artwork, diagrams, and explosion graphics. 
It’s a perfect source for anyone who wants to understand how his inventions were supposed to work, 
let alone for anyone who wants to recreate them with LEGO or any other materials. 



341

■ ■ ■

A P P E N D I X  A

Installation and Configuration of 
the Programming Environments 
Used in the Book

This appendix provides an overview of the installation and configuration of the programming envi-
ronments used in this book. Note that some of them are still in early stages of development and 
some of the configuration features may have changed or new ones may have been added since the 
writing of this book. Therefore, it’s advisable to check the programming environment’s manual for 
relevant changes.

LEGO MINDSTORMS NXT Software

Installation
The LEGO MINDSTORMS NXT Software comes on a CD that is part of the NXT retail kit. To install 
the software that runs on Windows and Mac OS X only, insert the CD into your computer’s CD drive. 
The installation routine will autostart, presenting a dialog to choose the installation’s language.1

Next, the installer will initialize. Don’t be disturbed by the (local) web page that is displayed, 
stating that your Bluetooth driver is not supported. This message always pops up since the installa-
tion program does not actually check your driver against the list of drivers known to collaborate 
flawlessly with the software. If you have doubts about your particular Bluetooth stack, have a look at 
the list on the official LEGO MINDSTORMS web site: http://mindstorms.lego.com/Overview/
Bluetooth.aspx.

After a dialog displays the components to be installed and the disk space required by them you 
can specify the installation’s target location on your machine. Then you’ll have to accept the license 
agreement. Once done, a summary window informs you about the actions that will be performed by 
the installer. This is the last chance to cancel the installation; once you click Next, the installation will 
actually start. When it finishes, you can optionally register yourself on the LEGO NXT web site.

After a reboot of the computer, you start the LEGO MINDSTORMS NXT Software by clicking the 
icon the installer has placed on your desktop.

1. Though there is a dialog to choose a language, version 1.0 of the LEGO MINDSTORMS NXT Software only 
supported an English installation at the time this book was written. 



342 AP P E N D I X  A  ■  I N S TA L L AT IO N  AN D  CO N F IG U R A T I O N  O F  T HE  P R OG R A M M I N G  E N V I R O N M E N TS  U S E D 

Configuration

Getting the Latest Software Versions

Now you need to ensure that you are running the most recent NXT firmware version. To check the 
version in the software you just installed, start the software and navigate to the Update NXT Firmware 
dialog via the Tools ➤ Update NXT Firmware menu (Figure A-1).

Figure A-1. Updating the NXT firmware

The firmware releases that are available locally on your machine are listed here. To check whether 
there are more recent ones available on the Web, click the Check button in the right upper corner. 
Your web browser will open with the official LEGO NXT MINDSTORMS Software update site. Select 
the latest version (if there is more than one available), download it, and follow the installation 
instructions.

■Note  It is recommended to check the Update NXT Firmware page from time to time to make sure you have the 
most recent version of the software.

Setting Up Profiles

I recommend setting up separate profiles for each of your NXT projects. A profile is a user-specific 
folder where the software saves programs, custom blocks, and other settings. There’s already a default 
profile you could use for all your work with the LEGO MINDSTORMS NXT Software, but I recom-
mend separating your NXT projects into different profiles. This makes it easier to group programs 
and custom blocks that are logically related.



AP P E N D I X  A  ■  I N S TA L L AT IO N  A N D  C ON F I G U R AT I ON  O F  T H E  P R O G R AM M IN G  E N V IR O N M E N T S  U S E D 343

Setting up a particular profile is easy; just run the Edit ➤ Manage Profiles feature from the menu 
bar and click Create to make a new profile (Figure A-2).

Figure A-2. The NXT Manage Profiles page

Updating the NXT Firmware on the Brick

Now you will upgrade the firmware on the NXT Brick to the one you just downloaded and installed. 
This is best done using the USB cable to connect the Brick with the computer and switch it on.

In the software, navigate to the Update NXT Firmware dialog again via the Tools ➤ Update NXT 
Firmware menu. This time, select the most recent version from the list (if you downloaded one, it 
should appear here; otherwise, something went wrong) and click the Download button (Figure A-3).

Figure A-3. Updating the NXT firmware on the Brick

You will notice a clicking sound from the Brick while the firmware is downloaded. This should 
stop once the download is complete; an appropriate message will be displayed then.



344 AP P E N D I X  A  ■  I N S TA L L AT IO N  AN D  CO N F IG U R A T I O N  O F  T HE  P R OG R A M M I N G  E N V I R O N M E N TS  U S E D 

Setting Up a Bluetooth Connection to the Brick

To complete the configuration, you will set up a Bluetooth connection to the NXT Brick, provided 
that you have a Bluetooth stack at your disposal.2

I will assume that you have already successfully installed a working Bluetooth stack on your 
machine and that this stack is compatible with the LEGO MINDSTORMS NXT Software. For current 
compatible stacks, see the official list at http://mindstorms.lego.com/Overview/Bluetooth.aspx. To 
connect the NXT Brick via Bluetooth to the software on your machine, first switch on the Brick to 
enable Bluetooth, using the settings entry. 

Now open a program in the software and navigate to the NXT Window dialog by clicking the 
Brick symbol on the control panel in the right lower corner of the editor window (Figure A-4).

Figure A-4. The NXT control panel

The NXT window will open and you can start scanning for the Brick by pressing the Scan button. 
After some while, the Brick should appear in the list of communications labeled as Available (Figure 
A-5).

Figure A-5. Connecting to the Brick via Bluetooth

2. A USB connection is sufficient for programming and remotely controlling the Brick, but for mobile robots, 
a Bluetooth connection is far more convenient.



AP P E N D I X  A  ■  I N S TA L L AT IO N  A N D  C ON F I G U R AT I ON  O F  T H E  P R O G R AM M IN G  E N V IR O N M E N T S  U S E D 345

When you click the Connect button, a Bluetooth connection will be established between the 
Brick and the software on your machine. When you close the dialog, installation and configuration 
of the LEGO MINDSTORMS NXT Software is complete. The control panel is the place where you will 
download your programs and run them on the Brick.

NXC

Installation
As mentioned in Chapter 2, NXC is best used in connection with the BricxCC environment. The 
installer for BricxCC can be freely downloaded at http://bricxcc.sourceforge.net and is presently 
available for Windows only. Make sure to use the most recent version because it is the only one that 
contains appropriate support for NXC.

Once the download is complete, execute the setup routine. After accepting the license agree-
ment and viewing some configuration steps where usually no changes are required, BricxCC is installed 
at the selected location.

Configuration
Before you start the BricxCC, make sure your NXT Brick is connected to your machine. The first thing 
BricxCC does is ask you to configure the referring COM port3 (in case you want to use Bluetooth) or 
the USB connection (Figure A-6).

Figure A-6. Configuring the connection to the Brick

You may skip this step, but if you do, certain options will be unavailable in the IDE. You can also 
complete this step later, using the Find Brick feature from the Tools menu.

Once the BricxCC has started successfully, check the connection by running the Diagnostics 
utility from the Tools entry in the menu bar (Figure A-7).

3. On Windows XP, this information may be obtained from the Bluetooth Devices dialog in the system settings of 
the Control Panel.



346 AP P E N D I X  A  ■  I N S TA L L AT IO N  AN D  CO N F IG U R A T I O N  O F  T HE  P R OG R A M M I N G  E N V I R O N M E N TS  U S E D 

Figure A-7. Checking the connection to the Brick

Now that the IDE is installed and configured appropriately, you can start writing NXC programs 
and downloading them to the Brick. It is advisable at the start to load one of the NXC sample programs 
that comes with BricxCC. You can compile, download, and run it on the Brick using the items in the 
menu or the toolbar (Figure A-8).

Figure A-8. Downloading and running an NXC program on the Brick

Feel free to further experiment with other features of BricxCC, including direct remote control 
and monitoring of the Brick or downloading new versions of the LEGO NXT firmware.



AP P E N D I X  A  ■  I N S TA L L AT IO N  A N D  C ON F I G U R AT I ON  O F  T H E  P R O G R AM M IN G  E N V IR O N M E N T S  U S E D 347

RobotC

Installation
RobotC is a commercial product produced by the Carnegie Mellon University Robotics Academy 
that can be purchased at http://www.robotc.net for $49US for a single license4 on CD-ROM or $30US for 
an Internet download. You will also find a lot more information at this site, including a Quickstart 
Guide, tutorials, sample programs, and a user forum. The most interesting thing is a trial version that 
allows you to evaluate the product for free for 30 days.

Once you download and start the installer, installation is simply performed by clicking through 
steps that usually do not require any changes except for accepting the license agreement. You can 
start RobotC from the icon placed on your desktop.

Configuration
On the startup screen you have to choose between two different types of licenses. The product starts 
with a 30-day trial license. Since RobotC comes with its own separate firmware, you have to replace the 
original LEGO NXT firmware on the Brick with RobotC’s. This is a mandatory step of the configuration.

To do so, connect the Brick to the computer with the USB cable. Switch it on and run the Link 
Setup feature from the Robot ➤ NXT Brick menu (Figure A-9).

Figure A-9. Linking to the Brick

In the NXT Brick Link Selection dialog, click the Refresh Lists button and you should notice your 
Brick listed as connected (Figure A-10).

4. There’s also a classroom license for up to 12 computers available for $265.



348 AP P E N D I X  A  ■  I N S TA L L AT IO N  AN D  CO N F IG U R A T I O N  O F  T HE  P R OG R A M M I N G  E N V I R O N M E N TS  U S E D 

Figure A-10. Connected Bricks

When you click the F/W Download button, you trigger the replacement of the Brick’s firmware 
with RobotC’s firmware. Select the firmware file that is located in the Firmware folder of your RobotC 
installation; it is selected by default. The download of the firmware will start and display a set of log 
messages on the open window (Figure A-11).

Similar to the process of downloading the original LEGO NXT firmware with the LEGO MIND-
STORMS NXT software, you will notice a clicking sound until the replacement is finished and RobotC 
has restarted the Brick.



AP P E N D I X  A  ■  I N S TA L L AT IO N  A N D  C ON F I G U R AT I ON  O F  T H E  P R O G R AM M IN G  E N V IR O N M E N T S  U S E D 349

Figure A-11. Replacing the firmware on the Brick

RobotC is now ready to be used for writing, compiling, downloading, running, and debugging 
programs to and on the Brick, using the entries in the Robot menu (Figure A-12).

Figure A-12. Downloading to and running programs on the Brick

I encourage you to try the various features of RobotC, in particular the debugger.



350 AP P E N D I X  A  ■  I N S TA L L AT IO N  AN D  CO N F IG U R A T I O N  O F  T HE  P R OG R A M M I N G  E N V I R O N M E N TS  U S E D 

leJOS NXJ

Installation
Since leJOS NXJ is based on the Java programming language and does not currently come with its 
own programming environment support, it’s advisable to use an existing Java IDE on the market. I 
recommend Eclipse, a platform that is open source and has undoubtedly become the most popular 
environment for Java-based applications over the past years, and justifiably so. Eclipse can be down-
loaded for free at http://www.eclipse.org.

Next, you need to download leJOS NXJ itself, which is open source and can be downloaded for 
free at http://lejos.sourceforge.net. Unzip the archive that contains the leJOS NXJ distribution 
into a local folder. Note that unlike the other programming environments previously introduced, 
leJOS NXJ also supports Linux.

Finally, you need to install the libusb drivers on your operating system. The libusb drivers are 
packed into an open source USB library and allow applications to access any USB device in a generic 
way without writing any line of kernel driver code. The API is used by the leJOS NXJ low-level routines.

To install libusb, download it from http://libusb.sourceforge.net (for Linux or Mac OSX) or 
from http://libusb-win32.sourceforge.net (for Windows) and follow the installation instructions 
provided there.

Configuration
Since leJOS NXJ is still in a rather early stage of its life cycle, configuration and usage is not as seam-
less as it will be once it has matured. For instance, in the alpha version available at the time of this 
writing, programs could not be saved on the Brick but had to be redownloaded for every execution.

Environment variables

You need to set the environment variable LEJOS_HOME to the folder you installed the distribution into 
and add the distribution’s bin folder to the PATH environment variable.

Eclipse

Configuration of Eclipse for use with leJOS NXJ is done on the project level. Since there is currently 
no particular leJOS NXJ plug-in available—a gap that will certainly be closed by the community in 
the near future—you will work with the standard features Eclipse provides for Java projects by default. 
To create a new Java project, open the Project ➤ Properties dialog and assign the libraries contained 
in the lib folder of your local leJOS NXJ distribution to the libraries on the build path (Figure A-13).

■Note  If you are not familiar with the basics of Eclipse, there is an abundance of documentation at http://
www.eclipse.org.



AP P E N D I X  A  ■  I N S TA L L AT IO N  A N D  C ON F I G U R AT I ON  O F  T H E  P R O G R AM M IN G  E N V IR O N M E N T S  U S E D 351

Figure A-13. Configuring the Java project

To link and download programs to the Brick, use the External Tools feature of Eclipse. For linking, 
define an external tool called lejoslink. Open the External Tools Configuration wizard by navigating 
through the Run ➤ External Tools ➤ External Tools menu and create a new configuration with 
settings, as displayed in Figure A-14.

Figure A-14. Creating an external tool for linking



352 AP P E N D I X  A  ■  I N S TA L L AT IO N  AN D  CO N F IG U R A T I O N  O F  T HE  P R OG R A M M I N G  E N V I R O N M E N TS  U S E D 

You will create another configuration for downloading to and running on the Brick (Figure A-15).

Figure A-15. Creating an external tool for downloading and running

To link, download, and run your leJOS NXJ program on the Brick, you simply have to select the 
file in your project and run the two external tools from the External Tools menu. Note that the NXT 
Brick must be connected to your machine with the USB cable and set to “firmware update mode.” 
To achieve this, click the reset button for more than four seconds and it will start ticking. Click the 
orange button and download the program to the Brick. It will start running immediately after the 
download is complete.



AP P E N D I X  A  ■  I N S TA L L AT IO N  A N D  C ON F I G U R AT I ON  O F  T H E  P R O G R AM M IN G  E N V IR O N M E N T S  U S E D 353

pbLua

Installation
pbLua is freely downloadable from Ralph Hempel’s web site at http://www.hempeldesigngroup.com/
lego/pbLua. After the download has finished, unpack the downloaded archive, which contains the 
pbLua interpreter and some samples, into a folder at your leisure. Since pbLua does not currently 
come with its own programming environment support, it’s advisable to use an existing IDE on the 
market. Again I recommend Eclipse. There is a collection of Lua plug-ins for Eclipse available at 
http://luaeclipse.luaforge.net.

Install Eclipse and the Lua plug-ins according to the installation instructions.

Configuration
Since pbLua comes with its own firmware, you have to replace the one on the Brick. To do so, take 
the following steps:

1. Connect the Brick to the computer with the USB cable.

2. Switch on the Brick.

3. Download the pbLua firmware file nxt-lua.rfw that comes with the pbLua distribution, using 
the firmware download utility of the LEGO MINDSTORMS NXT Software (see the “Updating 
the NXT Firmware on the Brick” section on the configuration of the LEGO MINDSTORMS 
NXT Software).

Once the download has started, the Brick will start to click. Wait until the download utility states 
that the software has been downloaded successfully. The clicking sound will stop and the display of 
the Brick will show a string starting with pblua <version>. 

Unplug the USB cable and plug it in again to make the computer recognize the new USB device. 
The operating system will ask for the appropriate driver for it. Use the .inf file that is contained in the 
usbDrivers folder in the pbLua distribution. You may safely ignore the warning that the driver is not 
signed. If all goes well, you will see a new entry, “pbLua USB Serial Port,” in the list of serial ports on 
your machine (for Windows, this list can be accessed by the Device Manager of your Systems dialog 
in the Control Panel). Write down the number of the associated COM port; you will need it later.

To communicate with the Brick now, in particular to download programs, you need a telnet 
client. On Windows XP this client is HyperTerminal, which should be installed by default. You can 
access it through the Accessories ➤ Communications panel. However, you are free to use any telnet 
client you like.

Open it and set up a new connection to the new COM port (Figure A-16).



354 AP P E N D I X  A  ■  I N S TA L L AT IO N  AN D  CO N F IG U R A T I O N  O F  T HE  P R OG R A M M I N G  E N V I R O N M E N TS  U S E D 

Figure A-16. Creating a connection to the Brick

Once the connection is established, hit the Return key a few times until the pbLua prompt (>) 
appears on the terminal. Now the Brick is able to accept direct input of commands or the download 
of a program.

To download a program, use the text file download capabilities of your telnet client. With 
HyperTerminal, for instance, this is done by navigating to Transfer ➤ Send Text File in the menu bar 
and selecting the pbLua program in question.

If your program has a main call to a function, it will run immediately; otherwise, you can run the 
function by typing in a call to the terminal and clicking Return. This will call the function on the Brick 
(Figure A-17).



AP P E N D I X  A  ■  I N S TA L L AT IO N  A N D  C ON F I G U R AT I ON  O F  T H E  P R O G R AM M IN G  E N V IR O N M E N T S  U S E D 355

Figure A-17. Remotely calling a pbLua function on the Brick

It’s advisable to download some of the sample programs that come with the pbLua distribution 
and run them by calling some of the functions contained there to test the proper working of the firm-
ware on the Brick.

Since the gray button on the Brick with the pbLua firmware is no longer configured to switch off 
the Brick, you will have to perform this task with the software; simply call the nxt.PowerDown() function 
in the terminal (Figure A-17).

Keep in mind that you can always put the original LEGO NXT firmware back on the Brick by 
performing the instructions in the “Updating the NXT Firmware on the Brick” section of this chapter. 
You might be required to reset the Brick beforehand by pushing the reset button located in one of the 
holes on the bottom of the Brick for more than four seconds. 



357

■ ■ ■

A P P E N D I X  B

Leonardo’s Letter of Application 
to the Duke of Milan

This  is a translation of the letter that Leonardo da Vinci wrote to Ludovico Sforza, the duke of Milan, 
to apply for a position as a military engineer in 1482. Sketches of some of his inventions introduced 
in this book may have been attached to it.

Having, most illustrious lord, seen and considered the experiments of all those who pose as
masters in the art of inventing instruments of war, and finding that their inventions differ in
no way from those in common use, I am emboldened, without prejudice to anyone, to solicit
an appointment of acquainting your Excellency with certain of my secrets.

1. I can construct bridges which are very light and strong and very portable, with which to
pursue and defeat the enemy; and others more solid, which resist fire or assault, yet are easily
removed and placed in position; and I can also burn and destroy those of the enemy.

2. In case of a siege I can cut off water from the trenches and make pontoons and scaling
ladders and other similar contrivances.

3. If by reason of the elevation or the strength of its position a place cannot be bombarded, I
can demolish every fortress if its foundations have not been set on stone.

4. I can also make a kind of cannon which is light and easy of transport, with which to hurl
small stones like hail, and of which the smoke causes great terror to the enemy, so that they
suffer heavy loss and confusion.

5. I can noiselessly construct to any prescribed point subterranean passages either straight or
winding, passing if necessary underneath trenches or a river.

6. I can make armored wagons carrying artillery, which shall break through the most serried
ranks of the enemy, and so open a safe passage for his infantry.

7. If occasion should arise, I can construct cannon and mortars and light ordnance in shape
both ornamental and useful and different from those in common use.

8. When it is impossible to use cannon I can supply in their stead catapults, mangonels,
trabocchi, and other instruments of admirable efficiency not in general use—In short, as the
occasion requires I can supply infinite means of attack and defense.



358 AP P E N D I X  B  ■  L E O N A R D O’ S  L E T TE R  O F  A P PL I CA T I O N  T O  TH E  D U KE  OF  M I L AN

9. And if the fight should take place upon the sea I can construct many engines most suitable
either for attack or defense and ships which can resist the fire of the heaviest cannon, and
powders or weapons.

10. In time of peace, I believe that I can give you as complete satisfaction as anyone else in the
construction of buildings both public and private, and in conducting water from one place
to another.

I can further execute sculpture in marble, bronze, or clay, also in painting I can do as much
as anyone else, whoever he may be.

Moreover, I would undertake the commission of the bronze horse, which shall endue with
immortal glory and eternal honor the auspicious memory of your father and of the illustrious
house of Sforza.

And if any of the aforesaid things should seem to anyone impossible or impracticable, I offer
myself as ready to make trial of them in your park or in whatever place shall please your
Excellency, to whom I commend myself with all possible humility.

—Leonardo Da Vinci



359

■ ■ ■

A P P E N D I X  C

Glossary

Aerial Screw
Helix-shaped flying device designed by Leonardo da Vinci that follows the idea of screwing into 
the air.

Armored Car
Tank-style design of Leonardo that merges the concepts of chariot and war tortoise. 

Block
Graphical element of the NXT-G programming language that encapsulates functionality such as 
motor control, sensor access, and other configurable items.

Bluetooth
Industrial specification for wireless personal area networks, providing a way to connect and exchange 
information between different kinds of devices. Used by the NXT to communicate remotely with 
other Bluetooth-enabled devices, in particular computers and other NXT robots.

Catapult
Leonardo’s design for an onager-style catapult that uses a double leaf spring to store kinetic energy.

Clos Luce
Also called Cloux, the manor house near the French king’s residence where Leonardo spent his 
final years from 1517 to 1519. 

Codex
Assemblies of loose sheets of Leonardo’s manuscripts compiled by different collectors over the 
centuries, following various collection criteria.

Custom Block
User-defined subprograms in the NXT-G programming language, consisting of sequences of 
blocks connected by beams and data wires.

Educational Base Set
Version of the LEGO MINDSTORMS NXT kit intended for schools and universities. Contains only 
431 parts and lacks the programming software, but contains a rechargeable battery pack.



360 AP P E N D I X  C  ■  G L OS SA R Y

Firmware
Software that is embedded into hardware. The NXT has its own firmware that can be thought of 
as its operating system. Released on an open source license in December 2006.

Flying Machine
Ornithopter-style flying device designed by Leonardo that mimics a bird’s method of flying.

Francois I
King of France. Lived 1494–1547. Patron of arts and of Leonardo in Leonardo’s later years.

Gran Cavallo
Giant bronze statue of a horse planned by Leonardo to be erected in Milan. Never completed in 
his lifetime because the material was used for guns instead. In 1999, a facsimile in reduced size 
(3 meters high instead of the originally intended 8) was created in Milan. 

Input Port
Port at the NXT Brick where an input device such as a sensor can be wired in. The Brick offers four 
input ports.

LEGO MINDSTORMS NXT Software
Official programming environment for the NXT, provided by LEGO.

leJOS NXJ
Open source Java-based operating system and programming platform for the LEGO 
MINDSTORMS NXT.

Lorenzo de Medici
Ruler of the Florentine Republic. Lived 1449–1492. Considered one of the most remarkable public 
figures of his time. Nicknamed “Il Magnifico.” Patron of Leonardo and of the arts in general. 

Ludovico Sforza
Duke of Milan. Lived 1452–1508. Nicknamed “Il Moro” due to his dark complexion. Leonardo’s 
employer during Leonardo’s first sojourn in Milan (1482–1499).

MINDSTORMS Community Partner Program (MCP)
Program initiated by LEGO made up of around 20 people charged with helping establish and 
deepen the connection between the NXT community and the LEGO Group. Successor to the 
MDP.

MINDSTORMS Developer Program (MDP)
Program initiated by LEGO made up of 100 people all over the world who tested beta versions of 
LEGO MINDSTORMS NXT kits and helped guide the product development process for the NXT. 
December 2005 to August 2006.



A P P E N D IX  C  ■  G L O SS AR Y 361

NXC (Not eXactly C)
C-style language that can be used to program the NXT Brick. Programs written in NXC are 
compiled to run on the original LEGO NXT firmware. Developed and maintained by John Hansen.

NXT Brick
Programmable controller of the NXT, its central component. Also known as The Intelligent Brick.

NXT File System
Persistent logical file system, also named Table of Contents (TOC), that is stored in the flash 
memory of the NXT. Used to save artifacts such as programs and data files.

NXT-G
Programming language that comes with the LEGO MINDSTORMS NXT Software. Provides a 
graphical syntax.

Output Port
Port on the NXT Brick where an output device such as a motor can be wired in. The Brick offers 
three output ports.

pbLua
Text-based programming language for the LEGO MINDSTORMS NXT. Based on Lua, a lightweight 
programming language created by a team from the Pontifical Catholic University of Rio de Janeiro, 
Brazil. Developed and maintained by Ralph Hempel.

Renaissance
French term meaning rebirth and denoting an era roughly between 1500 and 1700 when the focus 
of the occident’s highbrows shifted from metaphysical considerations to matters that from today’s 
view may be denoted as physical: interest in the human being itself, the scientific (rather than the 
philosophical) heritage of the antique, the reasons for the different phenomena mankind encounters 
in nature, and the attempt to make use of mechanical inventions for everyday life challenges.

Retail Version
Standard version of the LEGO MINDSTORMS NXT kit, containing 577 parts.

Revolving Bridge
Mechanical bridge designed by Leonardo that could swing around on its pylons.

Robo Center
Part of the LEGO NXT MINDSTORMS Software that is not directly connected to programming but 
serves as a bridge to the NXT community. Provides not only onscreen building instructions for 
four advanced robots, but also a portal to the LEGO.com MINDSTORMS community NXT web 
site that hosts challenges and NXT-G related material such as sample programs, sound files, and 
additional building instructions. 



362 AP P E N D I X  C  ■  G L OS SA R Y

RobotC
Programming environment based on the popular functional programming language C. Developed 
by the Carnegie Mellon University Robotics Academy.

Servo
Motor whose internal position and state can be controlled from an external unit. The NXT motors 
are servos.

Sound Sensor
Type of NXT sensor that measures the intensity of ambient sound.

Touch Sensor
Type of NXT sensor that responds to pressing and releasing. Intended to be used for short-distance 
detection by physical contact.

Try Me
Built-in program in the NXT that provides a graphical menu on its display to perform several 
administration tasks.

Ultrasonic Sensor
Type of NXT sensor that measures the reflection of high-frequency sonar signals it emits itself. 
Intended to be used for contact-free, long-range detection. 



363

■ ■ ■

A P P E N D I X  D

Bibliography

Books
Bagnall, Brian. Maximum LEGO NXT: Building Robots with Java Brains. Winnipeg, MB, Canada: 

Variant Press, 2007. 

Contributors to NXT STEP Blog. The LEGO MINDSTORMS NXT Idea Book: Design, Invent, and 
Build. San Francisco, CA: No Starch Press, 2007.

Ferrari, Mario; Ferrari, Guilio; and Astolfo, David. Building Robots with LEGO MINDSTORMS NXT. 
Rockland, MA: Syngress Publishing, 2007.

Gasperi, Michael; Hurbain, Isabelle; and Hurbain, Philippe. Extreme NXT: Extending the LEGO 
MINDSTORMS NXT to the Next Level. Berkeley, CA: Apress, 2007.

Hansen, John C. LEGO MINDSTORMS NXT Power Programming: Robotics in C. Winnipeg, MB, 
Canada: Variant Press, 2007. 

Kelly, Jim. LEGO MINDSTORMS NXT: The Mayan Adventure. Berkeley, CA: Apress, 2006.

Kelly, Jim. LEGO MINDSTORMS NXT-G Programming Guide. Berkeley, CA: Apress, 2007.

Laurenza, Domenico; Tadei, Mario; and Zanon, Edoardo. Leonardo’s Machines: Da Vinci’s Inventions 
Revealed. Newton Abbot, Devon, UK: David & Charles Publishers, 2006.

Web Sites
Apress Source Code/Download page, http://www.apress.com

Author’s web site, http://mynxt.matthiaspaulscholz.eu

The Drawings of Leonardo da Vinci, http://www.drawingsofleonardo.org

LEGO Education, http://www.legoeducation.com

LEGO.com MINDSTORMS NXT, http://mindstorms.lego.com

LEGO.com MINDSTORMS NXTLOG, http://mindstorms.lego.com/nxtlog

leJOS NXJ home page, http://lejos.sourceforge.net

Leonardo3, http://www.leonardo3.net

Leonardo da Vinci: The Codex Leicester, http://www.odranoel.de

Leonardo da Vinci: War Machines, http://digilander.iol.it/debibliotheca/Arte/
Leonardowar_file/page_01.htm



364 AP P E N D I X  D  ■  B I B L IO G R AP H Y

LUGNET Robotics NXT news group, http://news.lugnet.com/robotics/nxt 

The Models in Clos Luce, http://www.castles-france.net/vinci-clos-luce/amboise.htm

The Notebooks of Leonardo da Vinci, http://www.sacred-texts.com/aor/dv/index.htm

NXC home page, http://bricxcc.sourceforge.net/nxc

The NXT STEP, http://thenxtstep.blogspot.com

NXT Tutorial, http://www.ortop.org/NXT_Tutorial

nxtasy.org, http://nxtasy.org

pbLua home page, http://www.hempeldesigngroup.com/lego/pbLua

Philo’s NXT web site, http://philohome.com/nxt.htm

RobotC home page, http://www.robotc.net

Steve Hassenplug’s NXT web site, http://www.teamhassenplug.org/NXT

Universal Leonardo, http://www.universalleonardo.org

Wikipedia,  http://en.wikipedia.org/wiki/Leonardo_da_Vinci 



365

Index

■A
aerial screw

building, 231–260
complete robot, 232
da Vinci’s drawing of, 228
enhancing, 333
flying machine and, 10–13
hardware challenges, 231
historical background, 227–229
parts required for, 260
programming, 260–275
twisted upper wing helix, 231

aerodynamic lift, in helicopters, 228
armored car

adding ultrasonic sensor to, 331–332
bills of materials, 97
building, 59–97
challenges of building, 57–59
da Vinci’s design of, 5–6, 56
design, interpreting, 57
gearing mechanism, 57
historical background, 55–56
programming, 97–105

■B
Bagnall, Brian, 339
bibliography, 363–364
blocks, NXT-G, 30–33
blogs, NXT, 26
Bluetooth

adapter, 22–23
communication between NXT Bricks, 

309–317
setting up connection to Brick, 344–345

Bluetooth Developer Kit (BDK), 334
BlueTooth Remote Control (BTRC), 334
Brick

Bluetooth connection to, 344–345
performance of NXT-G vs. RobotC on, 43
programming environments for, 29–54
remotely calling pbLua function on, 355
updating NXT firmware on, 343

BricxCC, configuration, 345–346

bridges, 167–168. See also revolving bridge
bytecode, RobotC, 43

■C
canal excavation machine, 335
catapult

building, 111–146
building double leaf spring, 109
crank mechanism, 109–110
da Vinci’s design of, 6–7, 107–108
enhancing, 332
firing rate and range of, 108
hardware challenges, 109–110
historical background, 107–109
NXT program’s flow for, 148
parts required for robot, 146
programming, 147–165
wiring sensors and motor to Brick, 146

classes, in Java programs, 103
CMU Robotics Academy, RobotC developed 

by, 42
Codex Atlanticus

catapult manuscript as part of, 7, 108
revolving bridge drawing in, 167

computer-aided design (CAD) tools, 57
configuration panel, NXT-G IDE, 38
controller, NXT-G IDE, 38
crank mechanism

catapult’s, 109–110
connecting to great gear wheel, 149
motor block lifting in NXT, 149

custom blocks. See blocks, NXT-G
Custom Blocks palette, NXT-G, 32

■D
da Vinci, Leonardo

history of, 4
invention-driven tour of his life, 2
letter to duke of Milan, 357–358
obscure manuscripts of, 10–11
The Vitruvian Man, 2
web sites about, 336–337

Danti, Giovanni Battista, 277



366 ■IN D E X

data hub, NXT-G, 35
data wires, NXT-G, 34–35
dataflow language, NXT-G as, 30
Davis, Brian, 332, 334
debugger, starting in RobotC, 45
Define Variable command, NXT-G, 33
del Verrochio, Andrea, 2
display blocks, NXT-G, 31
double leaf spring, building catapult’s, 109

■E
Eclipse

configuring for use with leJOS NXJ, 350–352
web site, 350

editor, RobotC, 46

■F
firmware, NXT Bricks, 23–24
flying. See also under aerial screw

da Vinci’s fascination with, 10–11
flying machine. See also under aerial screw

awaiting incoming Bluetooth message, 
327–328

building, 280–305
building remote control, 309–317
checking remote NXT Brick connection, 

326–327
complete robot, 280
da Vinci’s design for, 13, 278
enhancing, 333
hardware challenges, 278–280
historical background, 277–278
NXC program for, 328
parts required for, 305, 317
programming, 318–329
propulsion of wings with LEGO parts, 279
remote control program’s flow, 318
wires for lifting and lowering wings, 306–308

forums, NXT, 26
fulcrum, LEGO implementation of, 168–169

■G
gearing mechanism, building armored cars, 

59–97
global variables, supported by NXT-G, 33–34

■H
Hassenplug, Steve

overview of NXT programming 
environments, 29

remote control by, 334

helix, aerial screw’s twisted upper wing, 231
Hempel, Ralph, 51
hydrodynamics. See also revolving bridge

da Vinci’s interest in, 7–10

■I
IDE (Integrated Development environment)

NXT-G, 35–39
RobotC, 44–46

■K
Kelly, James (Jim)

LEGO MINDSTORMS NXT  by, 338–339
The NXT Step, (blog) founded by, 26

kites, in China, 229

■L
Laurenza, Domenico, 57, 339
LEGO. See also LEGO MINDSTORMS NXT 

gearing mechanism rebuilt with, 58, 105
LEGO Education, web site, 26, 337
LEGO MINDSTORMS for Schools, 25–26
LEGO MINDSTORMS NXT, 338–339. See also 

NXT; NXT-G
community web site, 332
components, 15–24
configuration, 342–345
getting the latest software versions, 342
installation, 341
introduction to, 1–27
making other da Vinci inventions with, 

334–335
setting up profiles, 342–343
versions, 15
web sites, 337–338

LEGO MINDSTORMS NXT Idea Book, The, 339
LEGO MINDSTORMS NXT Software. See also 

NXT: software; 
Bluetooth connectivity with, 22–23
catapult programming with, 149–151

LEGO MINDSTORMS RCX, release of, 15
LEGO Software Developer’s Kit (SDK), 24
LEGO TECHNIC, building LEGO machines 

with, 1
LEGO.com MINDSTORMS Community NXT, 25
LEGO.com MINDSTORMS NXT, web site, 337
LEGO.com MINDSTORMS NXTLOG, web 

site, 337
leJOS NXJ

aerial screw programming, 268–271
AerialScrew class, 268



367■I N D E X

Find it faster at http://superindex.apress.com

catapult programming, 161–165
configuration, 350–352
configuring Eclipse for use with, 350–352
configuring motors’ power and ultrasonic 

sensor, 223
configuring touch sensors, 162
dropping crank mechanism, 163–164
example program snippets, 53–54
firing catapult, 163
installation, 350
Java-based operating system, 52–53
lifting crank mechanism, 162
loading catapult, 162–163
programming armored car with, 103–104
setting environment variables for, 350
swinging bridge away and back, 223–225
ultrasonic sensor detection statements, 

223–224
web site, 350

Leonardo’s Machines, 339
Leonardo3 web site, 57, 337
libusb drivers, installing, 350
light sensors, 20
Lilienthal, Otto, glider by, 229–230
loop blocks, NXT-G, 31
Lua. See also pbLua

based on lookup table concept, 52
plug-in for Eclipse, 51

■M
Manuscript B, aerial screw drawing in, 227
Maximum LEGO NXT, 339
MCP program. See MINDSTORMS Community 

Partners program
MDP. See MINDSTORMS Developer’s Program 
menu bar, RobotC, 45–46
MINDSTORMS Community NXT, 

LEGO.com, 25
MINDSTORMS Community Partners  

program, 25
MINDSTORMS Developer’s Program, 25
MINDSTORMS Education NXT, 25–26
motor blocks, NXT-G, 31
motors

driving in leJOS NXJ, 53
driving in NXC, 50
driving in pbLua, 52
driving in RobotC, 46
rotating in leJOS NXJ, 53
rotating in NXC, 51

rotating in pbLua, 52
rotating in RobotC, 47
stopping in leJOS NXJ, 53
stopping in NXC, 51
stopping in pbLua, 52
stopping in RobotC, 46

move blocks, NXT-G, 31
moveWings() function, 328
My Block Builder, NXT-G, 32

■N
National Instruments, NXT software developed 

by, 30
NXC (Not eXactly C)

aerial screw programming, 267
armored car programming with, 100–101
awaiting press of second touch sensor, 156
catapult programming, 155–157
configuration, 345–346
declaring touch sensors, 155
defining ultrasonic sensor, 217
dropping the crank, 156–157
example program snippets, 50–51
flying machine’s program, 326–329
installation, 345
lifting crank mechanism, 155
NXT Brick programming with, 47–50
remote control program, 324–326
running gear wheel, 155–156
switching the bridge, 217–218
ultrasonic sensor detection statements, 

217–218
NXT

Bluetooth stacks supported by, 23
Brick as catapult controlling unit, 111
Brick programmable controller, 16–17
catapult programming with, 149–151
community, 25–27
enhancing the five robots, 331–333
file system, 24
firmware, updating on the Brick, 343
hardware components, 16–23
motors, 18–19
programming environments, 29–54
programming language used in, 30–35
programming robots with, 30
remote programming software, web site, 334
software, 23–24
web site for overview of, 29



368 ■IN D E X

NXT Joystick, created by MDP member Philo, 
334

NXT Mobile Application, web site, 334
NXT robots. See robots
NXT STEP, The (blog), 26

web site, 338
nxtasy.org, web site, 26, 338
NXT-G, 30, 35

aerial screw programming, 262–264
armored car programming with, 98–99
example program snippets, 39
flying machine’s program, 321–323
Move block resetting bridge, 213–214
Move block switching bridge away, 212–231
performance vs. RobotC, 43
remote control program, 319–321
revolving bridge programming with, 211–214
sending Bluetooth notification, 320–321
ultrasonic detection in, 41–42
ultrasonic sensor detection loop block, 

212–213

■O
onager, 108
optical reflection, 2
ornithopter, 277

■P
pbLua, 51

aerial screw programming, 272–274
armored car programming with, 101–102
catapult programming, 157–160
configuring, 353–355
example program snippets, 52
firing loaded catapult, 159–160
installing, 353
rotating motor and lifting crank 

mechanism, 158
running gear wheel, 158–159
running infinite loop, 158
switching bridge away and back, 220–221
text-based programming language, 51
ultrasonic sensor detection statements, 

219–220
web site, 353

profiles, setting up for NXT projects, 342–343
program snippets (examples)

leJOS NXJ, 53–54
NXC, 50–51
NXT-G, 39

pbLua, 52
RobotC, 46–47

programming environments. See under NXT
programming palette, NXT-G IDE, 36
programming software, provided by NXT, 24

■R
RCX. See LEGO MINDSTORMS RCX
receive message blocks, NXT-G, 31
record/play blocks, NXT-G, 32
remote control

awaiting user pushing pedal down, 325
building flying machine’s, 309–317
checking NXT Brick connection, 324
NXT-G program, complete, 321–324
program flow, 318
resetting internal rotation sensor, 324–325
sending Bluetooth message after pedal 

down, 325–326
Renaissance artists, 2
revolving bridge

building, 167–226
completed robot, 169–170
da Vinci’s design of, 7–10
enhancing, 332–333
hardware challenges, 168
historical background, 167–168
parts required for robot, 209–210
program’s flow for, 211
programming, 210–226
wiring motors and sensors to Brick, 209

Robo Center, NXT-G IDE, 39
RobotC, 42–47

aerial screw programming, 264–266
armored car programming with, 99–100
catapult programming with, 152–154
configuration, 347–349
cross-platform support by, 43
declaring catapult sensors, 152
developed by CMU Robotics Academy, 42
evaluation version, 43
example program snippets, 46–47
features attractive to programmers, 44
firing catapult, 153–154
IDE, 44–46
installation, 347
lifting catapult’s hurling arm, 152–153
performance vs. NXT-G, 43
revolving bridge programming with, 214–216



369■I N D E X

Find it faster at http://superindex.apress.com

rotating crank lifting mechanism’s motor 
axis, 152

sensor values in, 42–47
switching bridge, 215–216
web site, 347

robots
enhancing, 331–333
four-wheeled in NXT-G, 39–40
in NXT, 29
playing sounds in NXT-G, 42
programming, 29–54
remotely controlling, 333–334
rotating in NXT-G, 41
sensor values in NXT-G, 41–42
stopping motors in NXT-G, 40–41

rotation sensor blocks, NXT-G, 31

■S
Scholz, Matthias Paul, 338
send message blocks, NXT-G, 31
sensor values

leJOS NXJ, 54
NXT-G, 41–42
RobotC, 42–47

sensors, NXT robots
light, 20
sound, 20–21
touch, 19
ultrasonic, 21–22

sequence beams, NXT-G, 30
servos, NXT motors as, 19
Silberpfeil robot, building instructions for, 40
software. See also LEGO MINDSTORMS 

NXT Software
required by NXT, 23–24

sound blocks, NXT-G, 31
decibel modes, adjusted and standard, 20

sound sensors, 20–21
sounds

playing in leJOS NXJ, 54
playing in NXC, 51
playing in NXT-G, 42
playing in RobotC, 47

standard decibel (db) mode, 20
stop blocks, NXT-G, 32
switch blocks, NXT-G, 32

■T
Table of Contents (TOC) file system, in NXT’s 

flash memory, 24
Tadei, Mario, 57, 339
Theater Stage for Orpheus, making with 

LEGO, 335
timer blocks, NXT-G, 32
toolbar, NXT-G IDE, 35–36
touch sensors, 19
trebuchet, 108
Try Me function, 24

■U
ultrasonic sensors, 21–22
Universal Leonardo, web site, 336
utilities. See LEGO MINDSTORMS 

NXT Software

■V
variables. See global variables
Vasari, Giorgio, 2
Virtual Machine (VM), RobotC, 43
The Vitruvian Man, 2

■W
wait blocks, NXT-G, 31
web sites recommended by author, 336–338
Wikipedia, web site, 337
work area, NXT-G IDE, 37

■Z
Zamor shooter, 332
Zanon, Edoardo, 57, 339


	cover-large.TIF
	front-matter.pdf
	fulltext.pdf
	fulltext_2.pdf
	fulltext_3.pdf
	fulltext_4.pdf
	fulltext_5.pdf
	fulltext_6.pdf
	fulltext_7.pdf
	fulltext_8.pdf
	back-matter.pdf



