

V I S I T U S A T

Syngress is committed to publishing high-quality books for IT Professionals and deliv-
ering those books in media and formats that fit the demands of our customers. We are
also committed to extending the utility of the book you purchase via additional mate-
rials available from our Web site.

SOLUTIONS WEB SITE
To register your book, visit www.syngress.com/solutions. Once registered, you can access
our solutions@syngress.com Web pages. There you may find an assortment of value-
added features such as free e-books related to the topic of this book, URLs of related
Web sites, FAQs from the book, corrections, and any updates from the author(s).

ULTIMATE CDs
Our Ultimate CD product line offers our readers budget-conscious compilations of some
of our best-selling backlist titles in Adobe PDF form. These CDs are the perfect way to
extend your reference library on key topics pertaining to your area of expertise,
including Cisco Engineering, Microsoft Windows System Administration, CyberCrime
Investigation, Open Source Security, and Firewall Configuration, to name a few.

DOWNLOADABLE E-BOOKS
For readers who can't wait for hard copy, we offer most of our titles in downloadable
Adobe PDF form. These e-books are often available weeks before hard copies, and are
priced affordably.

SYNGRESS OUTLET
Our outlet store at syngress.com features overstocked, out-of-print, or slightly hurt
books at significant savings.

SITE LICENSING
Syngress has a well-established program for site licensing our e-books onto servers in
corporations, educational institutions, and large organizations. Contact us at sales@syn-
gress.com for more information.

CUSTOM PUBLISHING
Many organizations welcome the ability to combine parts of multiple Syngress books, as
well as their own content, into a single volume for their own internal use. Contact us at
sales@syngress.com for more information.

s ',' N R E s s*

This Page Intentionally Left Blank

"~ ii!!iiiil ¸ill

::!ii!:~! ¸ ~iiii '̧ '~̧ ~̧̧,~,~ ~'~ "~'

:i!:ii::::! !i

iii!iii!iii!i!iii!i!i!i!iiii~!i!i!i!i!i!i!i!i!!i~!;~,,,,~

i~l!!!!!!T:

..... , ...

BUILDI NG ROBOTS WITH

~'~! ~i:: / ' ~iii~:~,i,~ ~ ,~ii~ ~ ~,,!~ " ~::'~'i~i~:~ ~ ! ~ ~i!i~ ~'~,~ ... ~ iii ii ,~ ~!~'i~ .. ~,~i~, ~i~!~ :'~i~iii~ ~ " iiii!i!~ ~,:~ i i i ~ : ~ i ~ , ~

ii~, ~ i~, . , . ~:~ ~!i! i~i~ ~'~ ~ iii !iii~ ~I ~':~:'"~'~J ::,~,~:::~:~. ~ ~:,~:~. .. ~

....... L

Elsevier, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively
"Makers") of this book ("the Work") do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold AS IS
and W I T H O U T WARRANTY.You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other incidental or
consequential damages arising out from the Work or its contents. Because some states do not allow the exclusion or
limitation of liability for consequential or incidental damages, the above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working with
computers, networks, data, and files.

Syngress Media| Syngress| "Career Advancement Through Skill Enhancement| "Ask the Author UPDATE|
and "Hack Proofing| are registered trademarks of Elsevier, Inc. "Syngress: The Definition of a Serious Security
Library ''TM, "Mission CriticalTg, '' and "The Only Way to Stop a Hacker is to Think Like One TM'' are trademarks of
Elsevier, Inc. Brands and product names mentioned in this book are trademarks or service marks of their respective
companies.

KEY SERIAL N U M B E R

001 HJIRTCV764
002 PO9873D5FG
003 829KM8NJH2
004 BPOQ48722D
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.
30 Corporate Drive
Burlington, MA 01803

Building Robots with LEGO Mindstorms NXT
Copyright �9 2007 by Elsevier, Inc. All rights reserved. Printed in the United States of America. Except as permitted
under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher, with
the exception that the program listings may be entered, stored, and executed in a computer system, but they may
not be reproduced for publication.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 0
ISBN-13:9781597491525

Publisher: Amorette Pedersen
Acquisitions Editor: Andrew Williams
Technical Editor: Dave Astolfo
Cover Designer: Michael Kavish

Project Manager: Gary Byrne
Page Layout and Art: Patricia Lupien
Copy Editor: Audrey Doyle
Indexer: J. Edmund Rush

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director and
Rights, at Syngress Publishing; email

D a v e Astolfo (GIS A.S.) is a Project Manager/Business Analyst with the
technical arm of a North American environmental consulting company. He
currently provides project management, technical consulting, database
design, and software architecture with a focus on geographic information
systems ranging from desktop mapping software to Web mapping portals
and mobile software applications. His specialties include database modeling
and software design/architecture. Dave is a key contributor to the business
development and implementation of products and services. As such, he
develops enterprisewide technology solutions and methodologies focused
on client organizations.

Dave holds a bachelor's degree from Trent University and is a certified
Geographic Information Systems Applications Specialist holding a certifi-
cate from Sir Sandford Fleming College. In early 2006, Dave was invited by
LEGO to participate in the LEGO MINDSTORMS Developer Program
(MDP) to help LEGO beta test the prerelease of the LEGO MIND-
STORMS NXT robotics system. After the release of the NXT, Dave was
invited back to participate in the LEGO MINDSTORMS Community
Partner Program (MCP) to work with LEGO in developing the product
further while providing an ear to the community. Dave has been involved
with LEGO all of his life, and he has been working with the MIND-
STORMS product since the initial release of the LEGO MINDSTORMS
Robotics Invention System (RIS) in 1998. Dave is well known for building
a MINDSTORMS domino-placing robot that was published in a previous
Syngress book (10 Cool Leg o Ultimate Builders Leg, o Mindstorms Robots, ISBN"
1-931-836-60-4). Since then, he has created newer versions with a more
recent NXT version being used by LEGO marketing staff in Europe. Visit
Dave's Web site, www.plastibots.com, for more information on his work.

Called the "DaVincis of LEGOS," Mario and Giulio Ferrari are world-
renowned experts in the field of LEGO M I N D S T O R M S robotics.

M a r i o Ferrari received his first LEGO box around 1964, when he was
four. LEGO was his favorite toy for many years, until he thought he was
too old to play with it. In 1998, the LEGO M I N D S T O R M S RIS set gave
him reason to again have LEGO become his main addiction. Mario believes
LEGO is the closest thing to the perfect toy. He is Managing Director at
EDIS, a leader in finishing and packaging solutions and promotional pack-
aging. The advent of the M I N D S T O R M S product line represented for him
the perfect opportunity to combine his interest in IT and robotics with his
passion for LEGO bricks, which started during his early childhood. Mario
has been a very active member of the online M I N D S T O R M S community
from the beginning and has pushed LEGO robotics to its limits. Mario
holds a bachelor's degree in Business Administration from the University of
Turin and has always nourished a strong interest for physics, mathematics,
and computer science. He is fluent in many programming languages, and
his background includes positions as an IT manager and as a project super-
visor. Mario estimates he owns more than 60,000 LEGO pieces. Mario
works in Modena, Italy, where he lives with his wife, Anna, and his children,
Sebastiano and Camilla.

vi

Giulio Fer rar i is Sales Manager at EDIS, a company that specializes in
premiums and promotional packaging. He studied economics and engi-
neering at the University of Modena and Reggio Emilia. He is fond of
computer programming and mathematical sciences, as well as puzzles and
games in general. He has a collection of 1,500 dice of all kinds and shapes.
Giulio coauthored the bestselling Building, Robots with LEGO Mindstorms
(Syngress Publishing, ISBN: 1-928994-67-9) with his brother Mario and
Ralph Hempel. The book has quickly become a fundamental reference and
source of ideas for many LEGO robotics fans. He is also a contributor to

Programming LEGO M I N D S T O K M S with Java (Syngress Publishing,

ISBN: 1-928994-55-5) and LEGO M I N D S T O R M S Masterpieces

(Syngress Publishing, ISBN" 1-931836-75-2). Giulio has been playing with

LEGO bricks since he was very young, and his passion for robotics started
in 1998, with the arrival of the MINDSTO1KMS series. From that moment
on, he held an important place in the creation of the Italian LEGO com-
munity, ItLUG, now one of the most important LEGO user groups world-
wide. He works in Modena, where he lives with his girlfriend, Claire, and

his son, Zeno.

Bryan Bonahoom is a LEGO M I N D S T O R M S enthusiast. He is a
member of the Lafayette LEGO Robotics Club and one of the original
team that developed the Great Ball Contraption. Bryan is also cofounder of
Brickworld TM. Bryan was selected by LEGO in 2006 as a member of the
MDP and later as a member of the M I N D S T O R M S Community Partners
(MCP). Bryan was also awarded the Best Robot Design Trophy at the 2005
AFOL Tournament at LEGO headquarters as a member of Team
Hassenplug. Bryan is possibly most well known for the creation of an NXT-
based robot that plays tic-tac-toe with a human opponent.

John Brost had a passion for LEGO and all things mechanical at an early
age. However, the interest waned, and like most adult LEGO fans, John
went through his "dark ages" in high school and while attending Purdue
University. The release of the Star Wars LEGO sets brought a renewed
interest in LEGO to John. But it was a chance encounter with an
announcement of a LEGO Robotic Sumo competition being held locally
that brought John back to LEGO 100 percent. It took only this event to
get John hooked. Less than two weeks later, John had his first MIND-
STORMS RIS kit, and he has been busily building robots and all sorts of

mechanical LEGO contraptions ever since then.

vii

John has participated in all types of MINDSTORMS competitions,
winning a few here and there. He has also been a coach for LafLRC's
(Lafayette LEGO Robotics Club) FIRST LEGO League team for the past
five years. In 2006, John was lucky enough to become a member of the
LEGO MINDSTORMS Developer Program to test the MINDSTORMS
NXT. Currently, John is a moderator on LEGO's NXTlog Web site and a
coordinator for the 2007 Brickworld convention being held in Chicago.

Rebeca Dunn-Krahn is a member of a working group at the University
of Victoria dedicated to increasing awareness and understanding of com-
puter science among children and young adults. She is currently producing
a short documentary film about these outreach efforts that include flee
robotics festivals using LEGO MINDSTORMS. Rebeca has also worked in
quality assurance and as a Java developer.

Rebeca holds a bachelor's degree in computer science and biochemistry
from the University of Victoria and lives in Victoria, Canada, with her
family. Rebeca would like to thank her husband, Tobias, and her children,
Sophia and Sebastian, for their support.

Richard Li is one of two nonadult contributors to Building Robots with
LEGO MINDSTORMS NXT. He is currently a seventh-grader at Beck
Academy and heads two award-winning FIRST LEGO League (FFL)
teams. They have been honored with the Champion's Award on several
occasions and are ranked as two of the top teams yearly. When not working
with his FLL teams, he experiments with his own robots at home. He
would like to thank his parents, Lin and Liang-Hong, for buying him his
LEGOs and dealing with him as he stayed up late several nights to meet his
deadline for this book. Richard currently resides in Simpsonville, SC.

Christopher Dale Minamyer (Bachelor of Science in Mechanical
Engineering, University of Arizona, 2007) began studying mechanical engi-
neering during the fall of 2002 and graduated from the University of
Arizona in May 2007. A lifelong LEGO fan, Chris has been building with
LEGO for 20 years.

viii

For the past four years Chris was an instructor of LEGO Robotics at
Ventana Vista Elementary School in Tucson, AZ. During this time he
instructed more than 300 students in grades one through five in LEGO
MINDSTORMS R C X and NXT. In addition Chris is a founding member
of the Tucson LEGO Club Masters Group and the head coach. Chris has
been a FIRST LEGO League coach for the past four years. In that time the
teams he coached have won the Robot Performance award (2004) and the
Research Quality award (2005) for the state of Arizona. In addition Chris
received the Adult Coach/Mentor award (2005) and the Appreciation award
(2006).

Chris would like to thank his mother, Martha, and father, Rodger, for
always supporting his LEGO building, and giving him his first set at the age
of three. In addition he would like to thank Misha Chernobelskiy of the
Tucson LEGO Club for providing an ideal environment for the instruction
of LEGO enthusiasts. Finally, Chris would like to thank Caryl Jones of
Ventana Vista Elementary School for her support and her continuing dedi-
cation to teaching LEGO robotics.

Deepak Patil developed interest in LEGO robotics when the original
LEGO MINDSTORMS kit was introduced in 1998. Since then Deepak
has coached FLL teams and has conducted several robotics workshops with
LEGO MINDSTORMS.

Deepak has a master's degree in Industrial Design from liT Bombay
and has designed user interfaces for diverse products, including pro-
grammable logic controllers, telephony software, and multimedia systems.
Deepak has worked for Cisco and other leading technology companies, and
he has led technology projects with globally interspersed teams of
engineers.

Deepak lives in Richmond, VA, with his wife, Priti, daughter, Vibha,
and son, Uday, an avid LEGO Robotics fan.

Mac Ruiz is a retired construction superintendent. His work entailed
problem solving and coordinating of off-site engineers and subcontractors
with the projects' realities. He also has experience in fabrication of farm
equipment from his family's dealership. This included steel fabrication and
mechanicals.

ix

Christian Siagian is working toward a Ph.D. degree in Computer Science

at the University of Southern California (USC). He is involved in the

Beobot Project that develops a biologically inspired vision-based mobile-

robot localization and navigation system. His research interests include
robotics and computer and biological vision.

As a teaching assistant for CS445 Introduction to Robotics at USC,
Christian develops laboratory curriculum to prepare undergraduates for
research in robotics. Christian also volunteers for after-school programs at
St. Agnes Parish School and EPICC in Los Angeles.These programs use
robotics to promote interest in science and mathematics in elementary and
middle school students.

Christian holds a bachelor's degree from Cornell University in
Computer Science and is a member of the IEEE.

Dick Swan is an embedded software consultant. He partnered with the
Robotics Academy at Carnegie Mellon University in developing the
RobotC programming environment for the NXT. He also codeveloped
with Tufts University the Robolab programming environment for the
NXT. Dick has 30 years' experience in software and hardware projects,
including embedded systems, telephone systems, and compilers. Dick has
both a bachelor's and master's degree in Computer Science from the
University of Waterloo and is a member of the IEEE.

Sivan Toledo is Associate Professor of Computer Science in Tel-Aviv
University in Israel. He holds a BSc degree in Math and Computer Science
and an MSc degree in Computer Science, both from Tel-Aviv University,
and a PhD in Computer Science from the Massachusetts Institute of
Technology. He authored more than 50 scientific papers and one textbook.
He serves on the editorial boards of the SIAM Journal of Scientific Computin 2
and of Parallel Computing.

Joshua Whitman is a home-schooled eighth-grader from Wichita, KS. He
has been building with LEGO bricks for as long as he can remember. He
received his first M I N D S T O R M S R C X kit at age eight. He has partici-
pated in numerous robotics groups, clubs, and classes. He competed on a

team in WSU's M I N D S T O R M S Robotics Challenge for tWO years. His

team won the first-place trophy both times.As an experienced member of

the team, he had to learn how to help teach the newer kids about M I N D -

STORMS. He was a part of the first winning team to use an N X T to
compete in the challenge.

His favorite (and most impressive) creation is a robot that can actually
lock and unlock his room through a rotation sensor combination lock. The
system is surprisingly secure, and 99.9 percent foolproof. He loves program-
ming more than anything else in robotics. His current project involves using
the N X T display as a screen for simple videogames like Pong.

Larry W h i t m a n (Ph.D., RE.) is an Associate Professor of Industrial and
Manufacturing Engineering at Wichita State University. Larry promotes
engineering in every context possible. He is especially interested in pro-
moting the technical literacy of all citizens, not just those who intend to be
engineers. To this end, he and several colleagues at Wichita State have devel-
oped a course using LEGO M I N D S T O R M S in a hands-on environment
to demonstrate basic engineering skills to nonengineering undergraduates.
He also coordinates a LEGO M I N D S T O R M S challenge competition for
middle school students. Finally, he promotes engineering by training his two
sons, Joshua and David, to love building LEGO robots.

Larry holds bachelor's and master's degrees from Oklahoma State
University. After spending 10 years in the aerospace industry as a practicing
engineer, he completed his Ph.D. from the University of Texas at Arlington.

Larry, Joshua, and David are forever indebted to Larry's wife, Heidi, for
putting up with pieces of robots around the house and dinner conversations
about robots and engineering.

Guy Ziv is now finishing his graduate studies in biological physics at the
Weizmann Institute of Science in Israel. He holds a bachelor's degree in
math and physics from the Hebrew University of Jerusalem and a master's
degree in physics from the Weizmann Institute. Guy has been working in
the field of measurement and automation for several years. He is an experi-
enced LabView TM programmer and was a beta tester of NI LabView T M

toolkit for N X T and M I N D S T O R M S N X T v. 1.1. Guy is the author and

xi

editor of NXTasy.org, the second largest NXT community site, and he
moderates NXTasy.org's repository and forums.

Daniel T. Barry (M.D., Ph.D.) is a former NASA astronaut who was a
crew member aboard the Space Shuttles Discovery and Endeavor. He
logged more than 734 hours in space, including four spacewalks totaling 25
hours and 53 minutes. He holds a BS degree in electrical engineering from
Cornell University; a master's of engineering degree and a master of arts
degree in electrical engineering/computer science from Princeton
University; a doctorate in electrical engineering/computer science from
Princeton University; and a doctorate in medicine from the University of
Miami in 1982.

Organizations to which he belongs include the Institute of Electrical
and Electronic Engineers (IEEE), the American Association of
Electrodiagnostic Medicine (AAEM), the American Academy of Physical
Medicine and Rehabilitation (AAPM1K), the Association of Academic
Physiatrists (AAP), and the Association of Space Explorers. He holds five
patents, has written 50 articles in scientific journals, and has served on two
scientific journal editorial boards.

Dr. Barry retired from NASA in April 2005 to start his own company,
Denbar Robotics, where he currently builds robots. Dr. Barry currently
lives in South Hadley, MA.

xii

Contents

F o r e w o r d . xxii i

Preface . x x v

C h a p t e r 1 U n d e r s t a n d i n g L E G O | G e o m e t r y 1
In t roduc t ion . 2

Expressing Sizes and Units . 2

Squar ing the L E G O World: Vertical Bracing 4

Ti l t ing the L E G O World: Diagonal Bracing 6

T E C H N I C Lif tarms:Angles Built In 9

S u m m a r y . 11

C h a p t e r 2 P lay ing w i t h Gears �9 13
In t roduc t ion . 14

C o u n t i n g Teeth . 14

Gear ing U p and D o w n . 15

R i d i n g Tha t Train: T h e Geartrain . 17

W o r m i n g Your Way: T h e W o r m Gear 19

Limit ing Strength wi th the Clu tch Gear 20

Placing and Fit t ing Gears . 23

Using Pulleys, Belts, and Chains . 30

Pulleys and Belts . 31

Chains . 33

M a k i n g a Difference: T h e Differential 35

S u m m a r y . 38

C h a p t e r 3 C o n t r o l l i n g M o t o r s . 41
In t roduc t ion . 42

Pacing, Trott ing, and Galloping . 43

Internals o f N X T Servo M o t o r 47

M o u n t i n g Moto r s . 48

W i r i n g Moto r s . 51

Using Power Func t ion Moto r s wi th the N X T 52

Cont ro l l ing Power . 54

De tec t ing M o t o r Over load . 55

Braking the M o t o r . 56

xiii

xiv Contents

C o u p l i n g M o t o r s . 57

S u m m a r y . 59

Chapter 4 Reading Sensors . 61
I n t r o d u c t i o n . 62

Digi ta l Sensor Ports w i t h the

I2C (In t e r - In t eg ra t ed Circui t) Interface 62

T h e T o u c h Sensor . 65

T h e Light Sensor . 71

M e a s u r i n g R e f l e c t e d Light . 73

Line Fo l lowing . 74

T h e Ul t rasonic Sensor . 77

P r o x i m i t y D e t e c t i o n . 79

T h e Servo M o t o r E n c o d e r (R o t a t i o n Sensor) 79

Sensor Tips and Tricks . 83

E m u l a t i n g a R o t a t i o n Sensor . 84

C o n n e c t i n g Mul t ip l e

Sensors to the Same P o r t - - M u l t i p l e x i n g 86

O t h e r Sensors . 88

T h e Passive Infrared Sensor . 89

T h e Pressure Sensor . 90

T h e Acce le ra t ion Sensor . 92

T h e C o m p a s s Sensor . 94

T h e N X T - t o - R C X C o m m u n i c a t i o n Br idge 95

T h e C o l o r Sensor . 96

S u m m a r y . 98

Chapter 5 What 's New wi th the NXT? 99
I n t r o d u c t i o n . 100

N o t a b l e E n h a n c e m e n t s . 100

Studless C o n s t r u c t i o n . 100

Electr ical C o n n e c t o r s . 100

R e c h a r g e a b l e Ba t t e ry Pack . 100

Flash M e m o r y . 101

Mul t ip l e Types o f Sensors . 101

T h e N X T File Sys tem . 101

F i l e - H a n d l i n g Func t ions . 102

Us ing File Space Efficient ly . 103

T h e L C D Screen . 103

Contents xv

Games . 104

Digital Interfaces and Blue too th . 105

B lue too th C o m m u n i c a t i o n . 106

A Surveillance R o b o t Using N X T and B lue too th 106

A Blue too th -Based R e m o t e Contro l le r 107

Spatial M o t i o n Control lers . 108

I2C for Spatial M o t i o n Control lers 109

Future Possibilities . 109

An N X T R o b o t Cont ro l led from a Web Server 109

N X T Puppe t Show . 110

GPS and the N X T . 110

S u m m a r y . 111

Chapter 6 Building Strategies . 113
In t roduc t ion . 114

Studless Bui lding Techniques . 114

Maximiz ing Modula r i ty . 118

Loading the Structure . 121

Put t ing It All Together: Chassis, Modulari ty, and Load 124

Hybr id Robo t s : Using Studless and Studded L E G O Pieces .129

S u m m a r y . 131

Chapter 7 Programming the NXT 133
In t roduct ion . 134

W h a t Is the N X T Programmable Brick? 134

M I N D S T O R M S : A Family of Programmable Bricks . . 136

In t roduc t ion to P r o g r a m m i n g the N X T Brick 137

H o w Does a Program R u n ? . 138

Using N X T - G . 139

Using R o b o t C . 141

Using O t h e r P r o g r a m m i n g Languages 142

Using N B C / N X C . 143

Using p b L U A . 144

Using LeJO S NXJ . 144

Using O t h e r P r o g r a m m i n g Tools and Envi ronments . . . 1 4 4

C o d e Samples . 145

C o d e Sample: A Simple Clock 145

Code Sample: Fol lowing a Line 151

R u n n i n g Independen t Tasks . 157

xvi Contents

S u m m a r y . 158

Chapter 8 Playing Sounds and Music 159
I n t r o d u c t i o n . 160

C o m m u n i c a t i n g t h r o u g h Tones . 160

Playing Mus ic . 161

C o n v e r t i n g S o u n d and Music Files 163

M I D I and M I D I B a t c h . 163

W A V 2 R S O . 165

T h e S o u n d Sensor . 166

S u m m a r y . 167

Chapter 9 Becoming Mobile . 169
I n t r o d u c t i o n . 170

Bu i ld ing the Simple Different ial Dr ive 170

K e e p i n g a Straight Path . 172

Us ing Servo M o t o r Encode r s to Go Straight 172

Us ing Gears to Go Straight 173

Us ing Casters to Go Straight 177

Bu i ld ing a Sk id-S tee r Dr ive . 180

Bu i ld ing a S tee r ing Dr ive . 183

Bu i ld ing a Synchro Dr ive . 187

O t h e r Conf igura t ions . 191

S u m m a r y . 192

Chapter 10 Getting Pumped: Pneumatics 193
I n t r o d u c t i o n . 194

Reca l l i ng S o m e Basic Science . 194

P u m p s and Cyl inders . 195

Con t ro l l i ng the Ai r f low . 200

Bu i ld ing Air Compres so r s . 202

Bu i ld ing a P n e u m a t i c E n g i n e . 206

S u m m a r y . 210

Chapter 11 Finding and Grabbing Objects 211
I n t r o d u c t i o n . 212

O p e r a t i n g Hands and Grabbers . 212

Us ing P n e u m a t i c s to Dr ive Your Grabbe r 218

F ind ing Objec t s . 222

Pos i t ion ing the Grabbe r . 225

Dis t ingu i sh ing Objec t s and Obstacles 225

Contents xvii

S u m m a r y . 228

Chapter 12 Doing the Math . 229
In t roduc t ion . 230

Mul t ip ly ing and Dividing . 231

Averaging Data . 233

Simple Averages . 233

Weighted Averages . 237

Using In terpola t ion . 240

Unders t and ing Hysteresis . 243

Higher Ma th . 245

S u m m a r y . 248

Chapter 13 Knowing Where You Are 249
In t roduc t ion . 250

Choos ing Internal or External Guidance 250

Look ing for Landmarks: Absolute Posi t ioning 251

Fol lowing the Beam . 255

Map Match ing Using Ultrasonic Sensor 259

C o m b i n i n g Compass Sensor to Increase Precision 260

Measur ing Movemen t : Relative Posi t ioning 260

Measur ing Movement : Accelerat ion Sensor 262

S u m m a r y . 263

Chapter 14 Classic Projects . 265
In t roduc t ion . 266

Explor ing Your R o o m . 266

Detec t ing Edges . 269

Variations on Obstacle De tec t ion 270

Fol lowing a Line . 271

Fur ther Opt imiza t ion o f Line Fol lowing 277

S u m m a r y . 278

Chapter 15 Building Robots That Walk 279
In t roduc t ion . 280

The T h e o r y beh ind Walking . 280

Bui lding Legs . 286

Building a Four -Legged R o b o t . 288

Bui lding a Six-Legged Steering R o b o t 291

Designing Bipeds . 296

xviii Contents

Interlacing Legs . 297

C O G Shifting . 300

Making Bipeds Turn . 302

Summary . 303

Chapter 16 Robotic Animals . 305
Introduct ion . 306

Creating a M o n k e y . 306

Step 1: Center M o t o r Assembly 307

Step 2: Shoulder Assembly . 308

Step 3: S h o u l d e r / N X T Brick Bracing 309

Step 4: Shoulder - to-Arms Support 310

Step 5: A r m Motors . 311

Step 6: M o n k e y Fingers . 312

Step 7: N X T Brick Backbracing and Ultrasonic Sensor .313

The Final Step: Wir ing Your M o n k e y 314

Programming Your M o n k e y . 314

Creating a Mouse . 316

Step 1: Mouse Frame and M o t o r Assembly 316

Step 2: Castor Bo t tom . 318

Step 3: Tail Assembly . 318

Step 4 :The Mouse Head Frame 319

Step 5: Motor i zed Mouse Head Assembly 320

Step 6: Moun t ing the Mouse Head to the Body 321

Step 7 :A Programming Example 322

Creating Othe r Animals . 324

Summary . 325

Chapter 17 Solving a M a z e . 327
Introduct ion . 328

Finding the Way O u t . 328

Using the Left S ide-Right Side Strategy 330

Applying O the r Strategies . 332

Building a Maze R u n n e r . 333

Construct ing the Maze R u n n e r 333

Programming the R u n n e r . 336

Creating the Maze . 339

Building a Maze Solver . 339

Construct ing the Maze Solver 339

Contents xix

P r o g r a m m i n g the Solver . 341

I m p r o v i n g the P r o g r a m . 347

S u m m a r y . 348

Chapter 18 Drawing and Writing 349
I n t r o d u c t i o n . 350

Crea t ing a Logo Turt le . 350

Bu i ld ing the Turt le . 350

P r o g r a m m i n g the Turt le . 355

Tape W r i t e r . 361

Bu i ld ing the W r i t e r . 361

P r o g r a m m i n g the W r i t e r . 366

W h a t to W r i t e . 369

F u r t h e r Suggest ions . 369

C o p y i n g . 369

E m u l a t i n g H a n d w r i t i n g . 370

Lea rn ing by E x a m p l e . 370

S u m m a r y . 371

Chapter 19 Racing Against Time 373
I n t r o d u c t i o n . 374

H o s t i n g and Par t ic ipa t ing in Contes ts 374

O p t i m i z i n g Speed . 376

Drag R a c i n g . 376

C o m b i n i n g Speed w i t h Precis ion . 377

Line Fo l lowing . 378

Wall Fo l lowing . 379

O t h e r Races . 380

S u m m a r y . 381

Chapter 20 Hand-to-Hand Combat 383
I n t r o d u c t i o n . 384

Bu i ld ing a R o b o t i c S u m o . 384

Set t ing the R u l e s . 385

M a x i m i z i n g S t rength and Trac t ion 386

At tack Strategies . 388

F ind ing the E n e m y . 388

Us ing Speed . 389

U s i n g a Transmiss ion . 390

xx Contents

O t h e r Sumo Tricks . 391

Get t ing Defensive . 391

Testing Your Sumo . 392

S u m m a r y . 393

Chapter 21 Searching for Precision 395
In t roduc t ion . 396

Precise Posi t ioning . 396

Shoot ing wi th Precision . 397

Fine M o t o r Skills o f Your R o b o t . 398

R e m o v i n g the Bricks . 398

Freeing the Magnets . 399

Fire Fight ing in a Maze . 401

Playing Soccer . 402

S u m m a r y . 403

Appendix A Resources . 405
In t roduc t ion . 406

Bibl iography . 406

General Interest Sites . 407

Cha~ter 1 Unders tand ing L E G O G e o m e t r y 408

C h a) t e r

C h a) t e r

C h a) t e r

Cha~ter

C h a) t e r

C h a) t e r

C h a) t e r

Cha~ter

C h a) t e r

Chap te r

Chap te r

Chap te r

Chap te r

Chap te r

Chap te r

Chapte r

Chapte r

Chap te r

2 Playing wi th Gears . 408

3 Cont ro l l ing Motors . 409

4 R e a d i n g Sensors . 409

5 What 's N e w wi th the N X T 411

6 Bui lding Strategies . 412

7 P r o g r a m m i n g the N X T 412

8 Playing Sounds and Music 413

9 B e c o m i n g Mobi le . 413

10 Get t ing Pumped: Pneumat ics 414

11 Finding and Grabbing Objects 415

12 D o i n g the Ma th . 415

13 K n o w i n g W h e r e You Are 416

14 Classic Projects . 417

15 Bui lding R o b o t s that Walk 417

16 R o b o t i c Animals . 417

17 Solving a Maze . 418

18 Drawing and W r i t i n g 418

19 Rac ing Against T ime . 419

Contents xxi

C h a p t e r 20 H a n d - t o - H a n d C o m b a t 419

C h a p t e r 21 Searching for Precis ion 420

Append ix B Matching Distances 421

Append ix C Note Frequencies . 427

Append ix D Math Cheat Sheet . 429
Sensors . 430

Averages . 430

In te rpo la t ion . 430

Gears, Wheels , and Nav iga t ion 431

Index . 433

This Page Intentionally Left Blank

Foreword

I was always building stuff as a kid. I didn't have LEGO, but I was pretty happy with an
erector set and whatever accessories were lying about the house. I still remember the day
that I got a motor to run a crane built from flimsy metal spars. The simple process of lifting
wooden blocks kept me entertained for hours. To me, that crane was not just a rickety pile
of metal and string; it was a massive construction machine, and I was building skyscrapers,
airports, entire cities. It was not so much about the things I built as it was about the things I
imagined I was building. That was true when my kids starting building stuff, too, although
they had the advantage of having LEGO, so we could build many more things. Together, we

built hundreds of airplanes (the more engines, the better!) and used them to run around the
house dogfighting. We built cities and destroyed them from missile bases. We built spaceships
and ocean liners, trucks and buses, bulldozers and backhoes, motorcycles and race cars, coli-
seums and fortresses. What a blast! However, even with all that variety, it was basically the
same activity that I had done when I was a child. Our stuff had no smarts.

And then along came M I N D S T O R M S . Suddenly, our creations were no longer com-
pletely predictable. Before MINDSTO1KMS, a car went where you pointed it, at whatever
speed your hand (or its motor) pushed it, and fairly quickly crashed. At best, you could buy a
remote control car, but even that just went where it was told. A MINDSTO1KMS car navi-
gates by itself, avoiding obstacles (or picking them up), and keeps going.

However, building things is only half the battle; prog, rammin 2 them is key. Furthermore,
these creations can actually do useful stuffl Right away my kids and I built a robot that
cleared the table. It ran around, detecting objects, scooping them up, and dumping them off

the table, while being careful not to fall off the table itself. Lights! Sensors! Action! A single
bot can do a million different things by just having you change the software.

At first I didn't like the graphical programming environment that came with M I N D -
STORMS. I was used to standard programming languages, and having to move blocks
around felt slow and clumsy. However, I found that, with no prior programming experience,

my kids could program intuitively with the blocks. And then I found I could understand
their programs with just a glance, not even having to read the code to follow the logic.

xxiii

xxiv Foreword

Cool! Ultimately, the kids built and programmed a working model of the Space Shuttle's

robotic arm, and I took it along with me into orbit on board shuttle Discovery.

The FI1KST LEGO League encourages kids to build robots as teams, and I am happy to

participate, both as a judge and in the design of the contests. One day I was backstage while

the competitions were running out front, and I saw a fifth-grader all alone, intently pro-

gramming her M I N D S T O R M S brick. I asked her if she had a moment to talk, and she

replied, "Well, OK, but just a minute because I have to get this working right now." We

talked for a bit about her project, and I realized that her grasp of concepts like torque, fric-
tion, and acceleration was at the level of a high school physics student. Finally I said, "You
seem really into this project; what got you interested in robotics?" She said, "I'll tell you, but
you have to keep it secret, OK? You bet," I replied. "Well, in our school there's a deal

where, if you do the LEGO league, you don't have to do any science for the whole year, and
I hate science, so I signed up for t h i s~and it is so great! Anyway, I have to get back to pro-

gramming since I 'm the only one who knows how this part works." So I left, amused to
have met someone who "hated science" and loved being a scientist!

With the advent of MINDSTO1KMS NXT, the motors, sensors, and programming envi-

ronment improved so much that I am incorporating N X T robots into the robots of my

company, Denbar Robotics. I have not duplicated with N X T the types of robots we are

making at Denbar. Instead, I decided to make robots that the Denbar robots command. For

example, I built an N X T robot that has two drive motors and uses the third motor to move
its light and ultrasound sensors. This robot can find light or dark directions, avoid obstacles,
and navigate around the house. Our big robot, Neel, can turn the lights in the house on and
off. So he can call the light-seeking robot by turning room lights on and off in a pattern that
results in the light seeker getting to him. My idea is to have groups of robots that include

leaders and followers. The LEGO robots can help Neel get access to spots that are too small
for him and can do tasks for him while he is busy doing something else.

As robotic tasks become more interesting, the robots themselves must become mechani-
cally more robust, able to withstand crashes, recover from upsets, steer accurately, and balance
loads well. The authors of this book, led by Technical Editor Dave Astolfo, a member of the
LEGO MINDSTO1KMS Developer P rogram/Communi ty (MDR MCP), have updated
Mario and Giulio Ferrari's content so that it is current with the NXT. They take us through
the basics of gears, motors, and sensors and then move on to pneumatics, grabbers, and navi-

gation, and eventually to tasks such as solving mazes and racing against time. The accurate

descriptions and precise images have already helped me to make my robots stronger and
more versatile. So gather your gear and let the inventing begin!

www.syngress.com

Dan Barry, M. D. , Ph. D.

N A S A Astronaut (retired)

Denbar Robotics

Preface

LEGO has been a part of my life since I was about four years old. My first sets were basic

LEGO SYSTEM sets. However, I soon lumped to the early T E C H N I C sets that were

beginning to appear on the market. Because I was one of those kids who had to take every-

thing apart to figure out how it worked, T E C H N I C seemed like a good fit for me. The best

part was that I was no longer breaking toys~a relief for my parents.

I remember sets such as the now-classic 856,853,855, and 8865. I don't seem to have

the original parts for any of these sets now. Like many other adult fans, I have gone through

dark years during which some of my LEGO parts were sold, others were thrown out, and
the rest were stored.

My interest in LEGO was rekindled in the late '90s, however, when I read about the

M I N D T O R M S Robotics Invention System (RIS) 1.0. The moment it was available for sale,
I ordered mine, and I now find myself where I am now. I had wished for this sort of thing

many years ago. Now with the advent of the N X T system, a whole new era of fun with
robotics has begun.

In early 2006, I was honored to be one of the 100 testers chosen by LEGO as part of its

M I N D S T O R M S Developer Program (MDP) for the beta testing of the new N X T system.

Once the product went to market in fall of 2006, I was also invited by LEGO to be part of

its M I N D S T O R M S Communi ty Partner (MCP) Program, which has allowed a core group

of adult fans to keep involved (with a great deal of excitement) with LEGO on upcoming
features/releases for the NXT.

Since my initial RIS purchase, I have built up an inventory of more than 50,000 pieces,

including three N X T sets, five RIS sets, three DDKs, one RDS, countless motors and sen-

sors, and a whole slew of other T E C H N I C pieces. Oddly enough, however, I still struggle to
find parts when building robots.

XXV

xxvi Preface

A few years back, Syngress, now an imprint of Elsevier Inc., asked me to author building

instructions in its now popular book, 10 Cool Lego Mindstorms Ultimate Builders Projects
(ISBN: 1-931836-60-4). My chapter of the book provided details and instructions on how

to build my RCX-based DominoBot. So when Syngress asked me in November 2006 to

become the technical editor of this book, my answer, of course, was yes.
As many of you may know, this book is a revision to the bestseller written by Mario and

Giulio Ferarri. My goal was to revise and update the content and make it specific to the
NXT system. In addition to the revised content, you will notice a significant shift from the
traditional brick-and-plate building approach to studless building techniques~the chapters
are rife with ideas and approaches to help guide you and ensure that your robot-building
experience is enjoyable! On behalf of myself and the rest of the authors of this book, we
hope you enjoy the diverse and plentiful information within it.

.David Ast0/f0
Technical Editor

Chapter I

Understanding
LEGO ® Geometry

Solutions in this chapter:

Expressing Sizes and Units

Squaring the LEGO World" Vertical Bracing

Tilting the LEGO World: Diagonal Bracing

TECHNIC Liftarms: Angles Built In

2 Chapter 1 �9 Understanding LEGO| Geometry

Introduction
Before you enter the world of LEGO robotics, we want to be sure you know and under-

stand some basic geometric properties of the LEGO bricks and beams. Don't worry; we're

not going to test you with complex equations or trigonometry. We'll just discuss some very

simple concepts and explain some terminology that will make assembling actual systems

easier from the very beginning.
You will discover which units LEGO builders use to express sizes, the proportions of the

bricks and beams, and how this affects the way you can combine them with different orien-

tations into a solid structure.
In the past few years, there has been a shift from building with T E C H N I C bricks and

beams to building with studless beams, pins, and connectors. After we introduce some basic

concepts, you will be exposed to these new ideas and see examples of how you can use

studless building.
We encourage you to try to reproduce all the examples we show in this chapter with

your own LEGO parts. If for any reason, you feel that what we present is too complex or

boring, don't force yourself to read it. Skip the chapter and go to another one.You can

always come back and use this chapter as a sort of glossary whenever you need it.

Expressing Sizes and Units
LEGO builders usually express the size of LEGO parts with three numbers, representing

width, length, and height, in that order. The standard way to use LEGO bricks is "studs up."

When expressing sizes, we always refer to this orientation, even when we are using the

bricks upside down or rotating them in 3D space.
Height is the simplest property to identify. It's the vertical distance between the top and

bottom of the basic brick. Width, by convention, is the shorter of the two dimensions which

lie on the horizontal plane (length is the other one). Both width and length are expressed in
terms of studs, also called L E G O units. Knowing this, we can describe the measurements of

the most traditional brick, the one whose first appearance dates back to 1949, which is 2 x 4

x 1 (see Figure 1.1).

Figure 1.1 The Traditional LEGO Brick

Understanding LEGO| Geometry �9 Chapter 1 3

LEGO bricks, although their measurements are not expressed as such, are based on the

metric system: A stud's width corresponds to 8 m m and the height of a brick (minus the
stud) to 9.6 mm. These figures are not important to remember. What's important is that they
do not have equal values, meaning you need two different units to refer to length and
height .Their ratio is even more important: Dividing 9.6 by 8 you get 1.2 (the vertical unit
corresponds to 1.2 times the horizontal one). This ratio is easier to remember if stated as a

proportion between whole numbers: It is equivalent to 6:5. Figure 1.2 shows the smallest

LEGO brick, described in LEGO units as a 1 x 1 x 1 brick. For the reasons explained previ-

ously, this LEGO "cube" is not a cube at all.

Figure 1.2 Proportions in a 1 x 1 x 1 LEGO Brick

The LEGO system includes a class of components whose height is one-third of a brick.

The most important element of this class is the plate, which comes in a huge variety of rect-

angular sizes, and in some special shapes too. If you stack three plates, you get the height of a

standard brick (see Figure 1.3).

Figure 1.3 Three Plates Make One Brick in Height

The advent of studless building has thrown a wrench into our understanding and use of

the classic brick-and-plate-construction approaches. The new studless components provide a

different way to construct LEGO models. The jury is still out regarding which method is

better or more prefer red~there are proponents on both sides of the fence with this. Figure

1.4 shows the traditional plates and bricks next to a newer T E C H N I C beam and a set of

three liftarms that are stacked, all to provide some reference on size.You will notice that

their stacked heights are not compatible across the studded (left) and studless (right) parts.

4 Chapter 1 �9 Understanding LEGO| Geometry

The one thing that is undeniable is that LEGO has made a significant shift with its

T E C H N I C and M I N D S T O R M S lines toward studless components. If you are a die-hard

studded builder, you are encouraged to take the plunge and try building studless. Many
found the change in approach a challenge at first, but use it almost exclusively now. Studless

building offers countless options for connectivity and even allows for building at odd angles

that was difficult to accomplish with traditional beams.

Figure 1.4 Comparing Bricks to Studless Beams and Liftarms

Squaring the LEGO World: Vertical Bracing
Why do we care about all these relationships? To answer this, we must travel back to the late
1970s when the LEGO T E C H N I C line was created. Up to that time, LEGO was designed
and used to build things made of horizontal layers: Bricks and plates integrate pretty well
when stacked together. Every child soon learns that three plates count for a brick, and this is
all they need to know. But in 1977, LEGO decided to introduce a new line of products tar-
geting an older audience: LEGO T E C H N I C . It turned the common 1 x N brick holes into
what we call a T E C H N I C brick, or a beam (Figure 1.5, left). These holes allow axles to pass
through them, and permit the beams to be connected to each other via pegs, thus creating a

whole new world of possibilities.
In the late 1990s, the advent of studless beams (Figure 1.5, right) opened the door to

alternative building options. One of the best sets in T E C H N I C history is undoubtedly the
8448 Super Street Sensation, which is built almost entirely from studless parts. LEGO was
clever with its approach here. Instead of using beams to construct the chassis and plates to
provide the "shell" or "form" for the model, the chassis was built using studless beams and its
style was handled by fairing panels, allowing the curves of the car to "flow" with the design.
LEGO did this to reduce costs: Less material required equals a cost savings in production.
You can see a great example of this if you compare the 8448 Super Street Sensation to the

classic T E C H N I C 8880 Supercar. Compare their approaches to construction, and their

weight.You will notice significant differences. The 8880 gets all its design cues from classic

T E C H N I C beams, whereas the 8448 uses fairings and flex axles for its design.

Understanding LEGO| Geometry �9 Chapter 1 5

Figure 1.5 The LEGO TECHNIC Beams

Suppose you want to mount a beam in a vertical position to brace two or more layers of

horizontal beams. Here's where you must remember the 6:5 ratio. The holes inside a beam

are spaced at exactly the same distance as the studs, but are shifted over by half a stud. So,
when we stand the beams up, the holes follow the horizontal units and not the vertical ones.

Consequently, they don't match the corresponding holes of the layered beams. In other

words, the holes in the vertical beam cannot line up with the holes in the stack because of
the 6:5 ratio.At least not with all the holes. But let's take a closer look at what happens.
Count the vertical units by multiples of 6 (6, 12, 18, 24, 30...) and the horizontal ones by
multiples of 5 (5, 10, 15, 20, 25, 30...). Don' t count the starting brick and the starting
h o l e ~ t h a t is your reference point; you are measuring the distances from that point.You see?

After counting five vertical units you reach 30, which is the same number you reach after

counting six horizontal units (see Figure 1.6).

Figure 1.6 Matching Horizontal and Vertical Beams

6 Chapter 1 �9 Understanding LEGO| Geometry

Now suppose you want to construct a robot that needs to be strong but light. With the

studded beams, you would have to use a number of beams, plates, and pins to create the

frame, and potentially you would need to cross-brace it. Depending on the approach taken,

you may even use the aforementioned stacking technique, which would make your robot

strong but heavy. With some of the newer parts that are now available, creating a strong and
li2ht chassis is quite simple and straightforward. Figure 1.7 shows a sample chassis that you

could use as a base for your robot. It employs very few pieces, and in fact, it uses only four
unique parts (in quantity) to make for a solid structure.

Figure 1.7 Sample Chassis

Tilting the LEGO World: Diagonal Bracing
Who said that the LEGO beams must connect at a right angle to each other? The very

nature of LEGO is to produce squared things, but with the advent of studless parts, diagonal
connections are mainstream now, making our world a bit more varied and interesting, and
giving us another tool for problem solving.

www.syngress.com

Understanding LEGO| G e o m e t r y , Chapter 1 7

You now know that you can cross-connect a stack of plates and beams with another

beam. And you know how it works in numerical terms. So how would you brace a stack of

beams with a diagonal beam?
You must look at that diagonal beam as though it were the hypotenuse of a right-angled

triangle. Continuing from the previous sample, Figure 1.8 adds a cross-brace to support the
structure and provides a sample for this next bit. Now proceed to measure its sides, remem-
bering not to count the first holes, because we measure lengths in terms of distances from

them. The base of the triangle is eight holes. Its height is six holes: Remember that in a stan-
dardized grid, every horizontal beam is at a distance of two holes from those immediately

below and above it. In regard to the hypotenuse, it counts 10 holes in length.

For those of you who have never been introduced to Pythagoras, the ancient Greek

philosopher and mathematician, the time has come to meet him. In what is probably the

most famous theorem of all time, Pythagoras demonstrated that there's a mathematical rela-

tionship between the length of the sides of right-angled triangles. The sides composing the
right angle are the catheti~let 's call them A and B. The diagonal is the hypotenuse~let 's call

that C. The relationship is:

A 2 + B 2 = C ~

Now we can test it with our numbers:

8 ~ + 6 ~ = 10 ~

This expands to:

(8 x 8) + (6 x 6) = (10 x 10)

64 + 36 = 100

100 = 100

Yes! This is exactly why the example works so well. It's not by chance; it's the good old
Pythagorean theorem. Reversing the concept, you might calculate whether any arbitrary pair
of base and height values brings you to a working diagonal. This is true only when the sum
of the two lengths, each squared, gives a number that's the perfect square of a whole
number. Let's try some examples (see Table 1.1).

8 Chapter 1 �9 Understanding LEGO| Geometry

Figure 1.8 Pythagoras' Theorem

T a b l e 1.1 Verifying Working Diagonal Lengths

A (Base) B (He igh t) A 2

5 6 25
3 8 9
3 4 9
15 8 225

9 8 81

www.syngress.com

B 2 A 2 + B 2

36 61
64 73
16 25
64 289

64 145

C o m m e n t s

This doesn't work.
This doesn't work.
This works? 25 is 5 x 5.
This works too. Although 289 is
17 x 17, this would come out a
very large triangle.
Note that 145 is not the square
of a whole number, but it is so
close to 144 (12 x 12) that if you
try to make it your diagonal
beam, it will f it with no effort at
all. After all, the difference in
length is less than 1 percent.

Understanding LEGO| Geometry �9 Chapter 1 9

At this point, you're probably wondering whether you have to keep your pocket calcu-
lator on your desk when playing with LEGO, and maybe dig up your old high school math

textbook to reread. Don't worry; you won't need either, for many reasons:

�9 You won't need to use diagonal beams very often.

�9 Most of the useful combinations derive from the basic triad 3-4-5 (see the third

line in Table 1.1). If you multiply each side of the triangle by a whole number, you
still get a valid t r iad~by 2: 6-8-10, by 3: 9-12-15, and so on.These are by far the

most useful combinations, and they are very easy to remember.

�9 We provide a table in Appendix B with many valid side lengths, including some
that are not perfect but so close to the right number that they will work very well

without causing any damage to your bricks.

We suggest you take some time to play with triangles, experimenting with connections

using various angles and evaluating their rigidity. This knowledge will prove precious when

you start building complex structures.

TECHNIC Liftarms: Angles Built In
As noted earlier, over the past several years LEGO has introduced a number of new
T E C H N I C parts that divert from the concept of straight beams and 90-degree connectivity.
We could review numerous parts here, but there simply is not enough room in the book for
this. Some of the more popular ones fit in the common group of studless beams, called l/f-
tarms. They come in many shapes and sizes, you can use them to connect parts at differing
angles, and you often see them in robot grabbers, fingers, ball casters, and so on. Figure 1.9
shows a sample ofliftarms from the T E C H N I C line.

Figure 1.9 A Variety of Liftarms

10 Chapter 1 �9 Understanding LEGO| Geometry

Liftarms are quite versatile parts that often come to the rescue when you're trying to

connect components in odd ways. As you browse through the chapters of this book, keep an

eye out for examples of this.You will see several samples that use liftarms in differing ways.

Some use them to connect motors at odd angles, and others use them for bracing. Figure

1.10 shows some examples of how you can use liftarms to brace a structure.
Using your own parts, try to re-create this sample.You will notice that you can connect

the liftarms at only certain holes and angles; not every combination works. However, by
using different types of liftarms, you can see how each one connects a little differently, thus

providing a number of ways to brace your robot.
It is also important to think outside the box here. With many of the newer T E C H N I C

parts, your models do not have to follow the traditional square or rectangular building

approach. For example, using Figure 1.10, you could extend one of the liftarms upward to

mount a sensor, or use it to connect a servo motor to provide a drive mechanism mounted

at an angle. Try to experiment with connecting liftarms and beams together and see how

you can brace your structure or extend components of your robot at odd angles.
The important thing to remember here is that you don't always have to follow the tradi-

tional approach of connecting beams and bricks at 90-degree angles.

Figure 1.10 Liftarm Bracing

Understanding LEGO| Geometry �9 Chapter 1 11

Summary
Did you survive the geometry? You can see it doesn't have to be that hard once you get
familiar with the basics. First, it helps to know how to identify the beams by their propor-
tions, counting the length and width by studs, and recognizing that the vertical unit to hori-
zontal unit ratio is 6 to 5. Thus, according to the simple ratio, when you're trying to find a
locking scheme to insert axles or pins into perpendicular beam holes, you know that every
five bricks in height, the holes of a crossed beam match up. Also, because three plates match
the height of a brick, the most compact locking scheme is to use increments of two plates

and a brick, because it gives you that magic multiple of 5. If you stay with this scheme, the
standard grid, everything will come easy: one brick, two plates, one brick, two plates...

To fit a diagonal beam, use the Pythagorean theorem. Combinations based on the triad

of 3-4-5 constitute a class of easy-to-remember distances for the beam to make a right tri-
angle, but there are many others.You also were exposed to the T E C H N I C liftarm, which
offers countless connectivity options for your robots. Remember to think outside the box
and not assume that you have to build via the traditional square or rectangular approach.
Explore with the parts you have in your kit, and discover new ways to connect parts using
studless building techniques.You will soon find that this way of building offers great flexi-

bility in design.

This Page Intentionally Left Blank

14 Chapter 2 �9 Playing with Gears

Introduction
You might find yourself asking "Do I really need gears?" Well, the answer is yes, you do.

Gears are so important for machines that they are almost their symbol: Just the sight of a

gear makes you think machinery. In this chapter, you will enter the amazing world of gears
and discover the powerful qualities they offer, transforming one force into another almost
magically. We'll guide you through some new concepts~velocity, force, torque, fr ict ion~as

well as some simple math to lay the foundations that will give you the most from the
machinery. The concepts are not as complex as you might think. For instance, the chapter
will help you see the parallels between gears and simple levers.

We invite you once again to experiment with the real things. Prepare some gears, beams,
and ames to replicate the simple setups of this chapter. No description or explanation can

replace what you learn through hands-on experience.

Counting Teeth
A single gear wheel alone is not very useful~in fact, it is not useful at all, unless you have in
mind a different usage from that for which it was conceived! So, for a meaningful discussion,
we need at least two gears. In Figure 2.1, you can see two very common LEGO gears: The
right one is an St, and the left is a 24t. The most important property of a gear, as we'll
explain shortly, is its teeth. Gears are classified by the number of teeth they have; the descrip-
tion of which is then shortened to form their name. For instance, a gear with 24 teeth

becomes "a 24t gear."

Figure 2.1 8t and 24t Gears

Playing with Gears �9 Chapter 2 15

Let's go back to our example. We have two gears, an 8t and a 24t, each mounted on an

axle. The two axles fit inside holes in a beam at a distance of two holes (one empty hole in

between). Now, hold the beam in one hand, and with the other hand gently turn one of the

axles. The first thing you should notice is that when you turn one axle, the other turns too.

The gears are transferring motion from one axle to the other. This is their fundamental property,

their very nature. The second important thing you should notice is that you are not required

to apply much strength to make them turn. Their teeth match well and there is only a small

amount of friction.This is one of the great characteristics of the LEGO T E C H N I C system:

Parts are designed to match properly at standard distances. A third item of note is that the

two axles turn in opposite directions: one clockwise and the other counterclockwise.

A fourth, and subtler, property you should have picked up on is that the two axles

revolve at different speeds. When you turn the 8t, the 24t turns more slowly, whereas

turning the 24t makes the 8t turn faster. Let's explore this in more detail.

Gearing Up and Down
Let's start turning the larger gear in our example. It has 24 teeth, each one meshing perfectly

between two teeth of the 8t gear. While turning the 24t, every time a new tooth takes the

place of the previous one in the contact area of the gears, the 8t gear turns exactly one

tooth too. The key point here is that you need to advance only eight teeth of the 24 to

make the small gear do a complete turn (360 degrees). After eight teeth more of your 24,

the small gear has made a second revolution. With the last eight teeth of your 24, the 8t gear

makes its third turn. This is why there is a difference in speed: For every turn of the 24t, the

8t makes three turns! We express this relationship with a ratio that contains the number of

teeth in both gears: 24 to 8. We can simplify it, dividing the two terms by the smaller of the
two (8), so we get 3 to 1. This makes it very clear in numerical terms that one turn of the

first corresponds to three turns of the second.
You have just found a way to get more speed! (To be technically precise, we should call

it angular velocity, not speed, but you get the idea.) Before you start imagining mammoth gear

ratios for race car robots, sorry to disappoint y o u ~ t h e r e is no free lunch in mechanics; you

have to pay for this gained speed.You pay for it with a decrease in torque, or, to keep in

simple terms, a decrease in strength.

16 Chapter 2 ~ Playing with Gears

So, our gearing is able to convert torque to veloci ty~the more velocity we want the

more torque we must sacrifice. The ratio is exactly the same: If you get three times your

original angular velocity, you reduce the resulting torque to one-third.

One of the nice properties of gears is that this conversion is symmetrical:You can con-

vert torque into velocity or vice versa. And the math you need to manage and understand
the process is as simple as doing one division. Along common conventions, we say that we

gear up when our system increases velocity and reduces torque, and that we 2ear down when
it reduces velocity and increases torque. We usually write the ratio 3:1 for the former and

1:3 for the latter.
When should you gear up or down? Experience will tell you. It largely depends on the

motor you start with and the robot you want to end up with. The MINDSTO1KMS N X T

servo motors are already geared down significantly within their plastic case, so they turn at a

relatively slow velocity and produce quite a bit of torque (see Chapter 3). Without gearing

up or down, they will provide a good match of speed and torque for many robots. If your

vehicle will climb steep slopes or your robotic arm will lift some load, you may still want to

gear down. If your vehicle will be lightweight and you want more speed, you can gear up.

Older LEGO motors have less internal gearing than MINDSTO1KMS N X T servo

motors. They rotate at a higher velocity but produce less torque. When using them, you will

generally want to gear down to reduce speed and increase torque.

Playing with Gears �9 Chapter 2 17

One last thing before you move on to the next topic. We said that there is no free lunch

when it comes to mechanics. This is true for this conversion service as well: We have to pay

something to get the conversion done. The price is paid in friction~something you should
try to keep as low as poss ib le~but it's unavoidable. Friction will always eat up some of your

torque in the conversion process.

Riding That Train: The Geartrain
The largest LEGO gear is the 40t, and the smallest is the 8t (used in the previous discus-

sion).Thus, the highest ratio we can obtain is 8:40, or 1:5 (Figure 2.2).

Figure 2.2 A 1"5 Gear Ratio

What if you need an even higher ratio? In such cases, you should use a multistage reduc-
tion (or multiplication) system, usually called a 2eartrain. Look at Figure 2.3. In this system,

the result of a first 1:3 reduction stage is transferred to a second 1:3 reduction stage. So, the

resulting velocity is one-third of one-third, which is one-ninth, and the resulting torque is

three times three, or nine. Therefore, the ratio is 1:9.

18 Chapter 2 ~ Playing with Gears

Figure 2.3 Geartrain with a Resulting Ratio of 1:9

Geartrains give you incredible power, because you can trade as much velocity as you

want for the same amount of torque. Two 1:5 stages result in a ratio of 1:25, whereas three

of them result in a 1:125 system! All this strength must be used with care, however, because

your LEGO parts may get damaged if for any reason your robot is unable to convert it into

some kind of work. In other words, if something gets jammed, the strength of a LEGO

motor multiplied by 125 is enough to deform your beams, wring your axles, or break the

teeth of your gears. We'll return to this topic later.

Continued

Playing with Gears ~ Chapter 2 19

Remember that in adding multiple reduction stages, each additional stage
introduces further friction, the bad guy that makes your world less than
ideal. For this reason, if you're aiming for maximum efficiency, you should try
to reach your final ratio with as few stages as possible.

Worming Your Way: The Worm Gear
In your N X T box, you've probably found another strange gear, a black one that resembles a

sort of cylinder with a spiral wound around it. Is this thing really a gear? Yes, it is, but it is so

peculiar we have to give it special mention.

In Figure 2.4, you can see a w o r m gear engaged with more familiar gears. The assembly

on the right uses a special LEGO part. It is called a worm gear block. With this single piece you

can connect the w o r m gear to a 24t gear. In just building these simple assemblies, you will

discover many properties. Try to turn the axles by hand. Notice that although you can easily

turn the axle connected to the w o r m gear, you can't turn the one attached to the other

gears. We have discovered the first important property: The w o r m gear leads to an asymmet-

rical system; that is, you can use it to turn other gears, but it can't be turned by other gears.

The reason for this asymmetry is, once again, friction. Is this a bad thing? No t necessarily. It

can be used for other purposes.

Figure 2.4 Worm Gears Engaged with Other Gears

20 Chapter 2 �9 Playing with Gears

Another fact you have likely observed is that the two axles are perpendicular to each

other. This change of orientation is unavoidable when using worm gears.You may also have

noticed when building these assemblies that the worm gear slides easily along an axle.

Sometimes this is useful, but most of the time you will have to fix it in place along the axle

with bushings.
Turning to gear ratios, you're now an expert at doing the math, but you're probably

wondering how to determine how many teeth this worm gear has! To figure this out,

instead of discussing the theory behind it, we proceed with our experiment. Taking the

middle assembly used in Figure 2.4, we turn the worm gear axle slowly by exactly one turn,

at the same time watching the 24t gear. For every turn you make, the 24t rotates by exactly

one tooth. This is the answer you were looking for: The worm gear is a It gear! So, in this

assembly, we get a 1:24 ratio with a single stage. In fact, we could go up to 1:40 using a 40t

instead of a 24t.
The asymmetry we talked about before makes the worm gear applicable only in

reducing speed and increasing torque, because, as we explained, the friction of this particular

device is too high to get it rotated by another gear. The same high friction also makes this

solution very inefficient, as a lot of torque gets wasted in the process.
As we mentioned earlier, this outcome is not always a bad thing. There are common sit-

uations where this asymmetry is exactly what we want. One example would be when
designing a robotic arm to lift a small load. Suppose we use a 1:25 ratio made with standard
gears: What happens when we stop the motor with the arm loaded? The symmetry of the

system transforms the weight of the load (potential energy) into torque, and the torque into
velocity, and the motor spins back, making the arm go down. In this case, and in many
others, the worm gear is the proper solution, its friction making it impossible for the arm to

turn the motor back.
We can summarize all this by saying that in situations when you desire precise and stable

positioning under load, the worm gear is the right choice. It's also the right choice when
you need a high reduction ratio in a small space, because it allows very compact assembly

solutions.

Limiting Strength with the Clutch Gear
Another special device you should get familiar with is the thick 24t white gear, which has

strange markings on its face (Figure 2.5). It is a clutch gear, and in the next part of this section

we'll discover just what it does.

Playing with Gears �9 Chapter 2 21

Figure 2.5 The Clutch Gear

Our experiment this time requires very little work; just put one end of an axle inside

the clutch gear and the other end into a standard 24t to use as a knob. Keep the latter in
place with one hand and slowly turn the clutch gear with the other hand. It offers some
resistance, but it turns. This is its purpose in life: to offer some resistance, then give in!

This clutch gear is an invaluable help to limit the strength you can get from a geared

system, and this helps to preserve your motors and your parts, and to resolve some difficult

situations. The mysterious "2.5 "5 Ncm" writing stamped on it (as explained earlier, N c m is a

newton-centimeter, the unit of measurement for torque) indicates that this gear can transmit

a maximum torque of about 2.5 to 5 Ncm. W h e n exceeding this limit its internal clutch

mechanism starts to slip.
What's this feature useful for? You have seen before that through some reduction stages

you can multiply your torque by high factors, thus getting a system strong enough to actu-
ally damage itself if something goes wrong. This clutch gear helps you avoid this, limiting the

final strength to a reasonable value.
There are other cases in which you don't gear down very much and the torque is not

enough to ruin your LEGO parts, but if the mechanics jam, the motor stalls~this could be
a very bad thing, because your motor draws a lot of current when stalled. The clutch gear

prevents this, automatically disengaging the motor when the torque becomes too high.

In some situations, the clutch gear can even reduce the number of sensors needed in

your robot. Suppose you build a motorized mechanism with a bounded range of action,

meaning that you simply want your subsystem (arms, levers, actuators~anything) to be in

one of two possible states: open or closed, right or left, engaged or disengaged, with no

intermediate position.You need to turn on the motor for a short time to switch the mecha-

nism from one state to the other, but unfortunately it's not easy to calculate the precise time
a motor needs to be on to perform a specific action (even worse, when the load changes, the

required time changes too). If the time is too short, the system will result in an intermediate

state, and if it's too long, you might do damage to your motor.

22 Chapter 2 �9 Playing with Gears

You can use a sensor to detect when the desired state has been reached. If you are using

N X T servo motors, you could simply use the built-in motor encoders to determine when

you should start and stop the motor (we will discuss this more in Chapter 4). However, you

might choose to use a different LEGO motor to power your subsystem. In this case, you will

not have a rotation sensor built-in to check. Wi thout a secondary sensor, you will have to

run a motor for a specific time. If you put a clutch gear somewhere in the geartrain, you can

now run the motor for the approximate time needed to reach the limit in the worst load sit-

uation, because the clutch gear slips and prevents any harm to your robot and to your motor

if the latter stays on for a time longer than required.

There's one last topic about the clutch gear we have to discuss: where to put it in our

geartrain.You know that it is a 24t and can transmit a maximum torque of 5 Ncm, so you

can apply here the same gear math you have learned so far. If you place it before a 40t gear,

the ratio will be 24:40, which is about 1:1.67.The maximum torque driven to the axle of

the 40t will be 1.67 multiplied by 5 Ncm, resulting in 8.35 Ncm. In a more complex

geartrain such as that in Figure 2.6, the ratio is 3:5 and then 1:3, coming to a final 1:5; thus,

the maximum resulting torque is 25 Ncm. A system with an output torque of 25 N c m will

be able to produce a force five times stronger than one of 5 Ncm. In other words, it will be

able to lift a weight five times heavier.
The clutch gear isn't the only way to introduce slip into a system. Later in this chapter

we'll discuss pulleys and belts, another way to introduce slip into a system.

Figure 2.6 Placing the Clutch Gear in a Geartrain

From these examples, you can deduce that the maximum torque produced by a system

that incorporates a clutch gear results from the maximum torque of the clutch gear multiplied

by the ratio of the following stages. W h e n you are gearing down, the more output torque you

Playing with Gears �9 Chapter 2 23

want, the closer you have to place your clutch gear to the source of power (the motor) in
your geartrain. On the contrary, when you are reducing velocity, not to get torque but to get
more accuracy in positioning, and you really want a soft touch, place the clutch gear as the
very last component in your geartrain. This will minimize the final supplied torque.

This might sound a bit complex, but we again suggest you learn by doing, rather than
by simply reading. Prototyping is a very good practice. Set up some very simple assemblies
to experiment with the clutch gear in different positions, and discover what happens in
each case.

Placing and Fitting Gears
The LEGO gear set includes many different types of gear wheels. Up to now, we played
with the straight 8t, 24t, and 40t, but the time has come to explore other kinds of gears, and
to discuss their use according to size and shape.

In studless buildings, unlike traditional studded building, the holes in T E C H N I C
beams stacked atop one another are the same distance apart as holes in a single beam. This
means gears connected together will be the same number of holes apart, whether con-
nected horizontally along the same beam or vertically across multiple beams (see Figure

2.7 and Figure 2.8).

Figure 2.7 Vertical Matching of Gears

www.syngress.com

~J

4m

�9

Z
r

c]

�9

�9

q
Q

Z
r

c
~

c~

q
Q

D
o

k
o

"1
"1

m
,

C ,
-
+

D
-

G]

~D

-
r

O N O r-
+

O
_

< ~D

,
-
+

D"

"O

D"

&%

Playing with Gears �9 Chapter 2 25

F i g u r e 2.9 The 16t Gear

Its radius is 1, and it combines well with a copy of itself at a distance of two. Getting it

to cooperate with other straight gears, however, is very difficult.

When you are using a pair of 16t gears, the resulting ratio is 1:1.You don't get any effect

on the angular velocity or torque (except in converting a fraction of them into fiiction), but

indeed there are reasons to use them as a pa i r~ fo r instance, when you want to transfer

motion from one axle to another with no other effects. This is, in fact, another task that

gears are commonly useful for. There's even a class of gears specifically designed to transfer

motion from one axle to another axle perpendicular to it, called bevel gears.
The most common member of this class is the 12t bevel gear, which can be used only

for this task (Figure 2.10), meaning it does not combine at all with any other LEGO gear

we have examined so far. Nevertheless, it performs a very useful function, allowing you to

transmit the motion toward a new direction, while using a minimum of space.There's also a

20t bevel conical gear with the same design of the common 12t (Figure 2.11). Both of these

bevel gears are half a beam in thickness, whereas the other gears are one beam in thick.

www.syngress.com

26 Chapter 2 �9 Playing with Gears

Figure 2.10 Bevel Gears on Perpendicular Axles

Figure 2.11 The 20t Bevel Gear

The 24t gear also exists in the form of a crown 2ear, a special gear with front teeth that
can be used like an ordinary 24t, but can also combine with another straight gear to transmit
motion in an orthogonal direction (that is, composed of right angles), possibly achieving at
the same time a ratio different from 1:1 (Figure 2.12).

You may have noticed another group of gears in your collection. They are wider and the

edges of their teeth look like the bevel gear on both sides. These are double bevel gears. Count

the number of teeth on them.You will find they are 12t, 20t, and 36t gears (see Figure 2.13).

Playing with Gears ~ Chapter 2 27

Figure 2.12 The Crown Gear on Perpendicular Axles

Figure 2.13 12t, 20t, and 36t Double Bevel Gears

You will notice when you place these gears on a single beam that two gears of the same

size will not mesh with one another. For this reason, double bevel gears are generally used in

pairs of different sizes, either a 12t and a 20t, or a 12t and a 36t. These gears are designed to

work well in both perpendicular and horizontal setups (Figure 2.14).

28 Chapter 2 �9 Playing with Gears

Figure 2.14 Meshing Double Bevel Gears

Mismatched pairs of double bevel gears use the same hole spacing as straight gears, so

pairs of them can be used in place of a pair of straight gears, offering some new gear

ra t ios~for example, a 12t and a 20t double bevel gear pair mesh at a distance of 2, the same

as an 8t and 24t straight gear pair. Be careful when mixing and matching double bevel gears

and straight gears; although they use some of the same hole spacing, double bevel gears and

straight gears don't work with each other. To use them together you will have to use them

in pairs (Figure 2.15).

Figure 2.15 Double Bevel Gears and Straight Gears in a Geartrain

The last gear that we'll describe doesn't look like a gear at all. In fact, it isn't known as a

gear, but as a knob wheel (Figure 2.16)

www.syngress.com

Playing with Gears �9 Chapter 2 29

Figure 2.16 TECHNIC Knob Wheel

Examine the knob wheel and you will find that it is basically a 4t gear (see Figure 2.17).

Connect it with another copy of itself and you will see that it works very well as a gear. Like

double bevel gears, it can also work in perpendicular setups.

Figure 2.17 TECHNIC Knob Wheel on Perpendicular Axles

In perpendicular setups, knob wheels have one major advantage over double bevel gears.

Connect two knob wheels. Examine how much area on each tooth of the knob wheel con-

tacts a tooth on the other. Compare that to a pair of double bevel gears. The knob wheels

have much more contact area. This means they can transmit much more torque from one

axle to the other.

30 Chapter 2 �9 Playing with Gears

The final class of gears is actually a combination of gears and bricks. They are clear

LEGO bricks with gears encased inside them and axle holes on the faces. These bricks are

commonly referred to as T E C H N I C gearboxes (see Figure 2.18).They come in three dif-

ferent types. The first is a worm gearbox that functions exactly like the worm gear block

with the 24t gear discussed earlier. In fact, it even has the same gear ratio, as the gear inside

is a 24t gear.The second type is a 90-degree angle gearbox. Encased within it are two bevel

gears at a right angle to each other. This can be used exactly like the bevel gears previously

discussed. The final gearbox type also uses bevel gears at right angles. However, instead of

having just two axle holes, it has three, so it can be used as a T-connection. It can be used to
split the output of a single driven axle into two outputs.

Figure 2.18 TECHNIC Gearboxes

These gearboxes are functionally no different from the bevel gears previously discussed.
The same gear trains could be built with the bevel gears and worm gears already discussed.
However, the gearboxes do have two major advantages. They take up very little space and are

able to transmit quite a bit of torque. The gears are firmly encased in the LEGO bricks, so
there is very little opportunity for the gears to slip. These gearboxes do have two drawbacks.

The first is their availability. The gearboxes have been included in only a few sets and are not

widely available. Second, the bricks are studded, which means they are primarily designed to

be used with traditional studded T E C H N I C bricks, not the studless beams included in the

N X T kit and most new T E C H N I C sets. This doesn't mean they cannot be used in studless

constructions; as you will see in Chapter 6, using both studded and studless building tech-
niques in a single creation is possible.

Using Pulleys, Belts, and Chains
Pulleys and belts are two classes of components designed to work together and perform func-

tions similar to that of gears~similar, that is, but not identical. They have indeed some pecu-

www.syngress.com

Playing with Gears �9 Chapter 2 31

liarities which we shall explore in the following paragraphs. The M I N D S T O R M S N X T kit

includes a few pulleys, but no belts.You will have to buy them separately.
Chains are also not part of the basic N X T kit. Though not essential, they allow you to

create mechanical connections that share some properties with both geartrains and pulley-

belt systems.

Pulleys and Belts
Pulleys are like wheels with a groove (called a race) along their diameter. The LEGO
T E C H N I C system currently includes four kinds of pulleys, shown in Figure 2.19.

Figure 2 .19 Pulleys

The smallest one (a) is actually the half-size bush, normally used to hold axles in place to

prevent them from sliding back and forth. Because it does have a race, it can be properly

termed a pulley. Its diameter is one LEGO unit, with a thickness of half a unit.
The small pulley (b) is 1 unit in thickness and about 1.5 units in width. It is asymmet-

rical, however, because the race is not in the exact center. One side of the axle hole fits a
rubber ring that's designed to attach this pulley to the micromotor. The medium pulley (c) is
again half a unit thick and 3 units in diameter. Finally, the large pulley (d) is 1 unit thick and

about 4.5 units in diameter.

32 Chapter 2 �9 Playing with Gears

LEGO belts are rings of rubbery material that look similar to rubber bands. They come

in four versions, with different colors corresponding to different lengths: white, blue, red, and

yellow. Don't confuse them with actual rubber bands: Rubber bands have much greater elas-

ticity, and for this reason are much less suitable to the transfer of motion between two pul-

leys. This is, in fact, the purpose of belts: to connect a pair of pulleys. LEGO belts are

designed to perfectly match the race of LEGO pulleys.
Let's examine a system made of a pair of pulleys connected through a belt (Figure 2.20).

The belt transfers motion from one pulley to the other, making them similar to a pair of
gears. How do you compute the ratio of the system? You don't have any teeth to count...
The rule with pulleys is that the reduction ratio is determined by finding the ratio between
their diameters (this rules applies to gears too, but the fact that their circumference is cov-
ered with evenly spaced teeth provides a convenient way to avoid measurement) . You actu-

ally should consider the diameter of the pulley inside its race, because the sides of the race
are designed specifically to prevent the belt from slipping from the pulley and don't count as

part of the diameter over which the belt acts.

Figure 2 .20 Pulleys Connected with a Belt

You must also consider that pulleys are not very suitable to transmitting high torque,

because the belts tend to slip. The amount of slippage is not easy to estimate, as it depends
on many factors, including the torque and speed, the tension of the belt, the friction

between the belt and the pulley, and the elasticity of the belt.

For those reasons, we preferred an experimental approach and measured some actual

ratios among the different combinations of pulleys under controlled conditions.You can find
our results in Table 2.1.

Playing with Gears �9 Chapter 2 33

Table 2.1 Ratios among Pulleys

Half Bush Small Pulley Medium Pulley Large Pulley

Half bush 1 "1 1 "2 1:4 1 "6
Small pulley 2"1 1 "1 1 "2.5 1:4.1
Med ium pul ley 4"1 2.5"1 1"1 1"1.8
Large pulley 6"1 4.1 "1 1.8"1 1 "1

These values may change significantly in a real-world application, when the system is

under load. Because of this, it's best to think of the figures as simply an indication of a pos-
sible ratio for systems where very low torque is applied. Generally speaking, you should use
pulleys in your first stages of a reduction system, where the velocity is high and the torque is
still low.You could even view the slippage problem as a positive feature in many cases, acting
as a torque-limiting mechanism such as the one we discussed in the clutch gear, with the
same benefits and applications. However, be careful when using belts and pulleys to allow
slip in a system. Belts turning around pulleys that are not turning will cause friction and heat
to build up. In time, the belt will break. Also, the belts have a tendency to jump off the
pulley, causing your entire system to fail.

Another advantage of pulleys over gear wheels is that their distance is not as critical.
Indeed, they help a great deal when you need to transfer motion to a distant axle (Figure
2.21). And at high speeds, they are much less noisy than gears~a facet that occasionally
comes in handy.

Figure 2.21 Pulleys Allow Transmission across Long Distances

Chains
LEGO chains come in two flavors: chain links and tread links. LEGO produces two different

types of tread links. The first shares the same hooking system with the chain links. They are
freely mixable to create a chain of the required length. The second tread link is a newer

introduction and uses a different hooking system, so it can be connected only with other
copies of itself (see Figure 2.22).

www.syngress.com

34 Chapter 2 �9 Playing with Gears

Figure 2.22 Chain Link, Tread Link, and New-Style Tread Link

Chains are used to connect gear wheels in the same way belts connect with pulleys (see

Figure 2.23). They share similar properties as well: Both systems couple parallel axles without

reversing the rotation direction and both give you the chance to connect distant axles. The

big difference between the two is that chain links don't allow any slippage, so they transfer

all the torque (actually, the maximum torque a chain can transfer depends on the resistance

of its individual links, which in the case of LEGO chains is not very high). On the other

hand, they introduce further friction into the system, and for this reason are much less effi-
cient than direct gear matches.You will find chains useful when you have to transfer motion

to a distant axle in low-velocity situations. The ratio of two gears connected by a chain is

the same as their corresponding direct connection. For example, a 16t connected to a 40t
results in a 2:5 ratio.

Figure 2.23 Chain Links

T E C H N I C tread links can be used to make tracked robots (see Figure 2.24). However,

like most LEGO parts, they are plastic. They provide very little grip when on slippery sur-

faces such as wood, tile, or plastic. They work better on other surfaces such as carpet.

www.syngress.com

Playing with Gears �9 Chapter 2 35

Figure 2.24 Tread Links

The gears used to drive chains or treads are commonly referred to as sprockets. LEGO

chains and the older tread links use straight gears for their drive sprockets. The new-style

tread link uses a new LEGO drive sprocket design that meshes only with the new tread link.

It will not mesh with any other gear types.

Making a Difference: The Differential
We want to introduce you to a very special device now: the differential gear.You probably

know that there's at least one differential gear in every car. What you might not know is

why the differential gear is so important.
Let's do an experiment together. Take two wheels from your N X T kit and connect their

hubs with the longest axle (Figure 2.25). N o w put the wheels on your table and push them

gently" They run smoothly and advance some feet, going straight. Very straight. Keep the axle
in the middle with your fingers and try to make the wheels change direction while pushing
them. It's not so easy, is it?

The reason is that when two parallel wheels turn, their paths must have different lengths,

the outer one having a longer distance to cover (Figure 2.26). In our example, in which the

wheels are rigidly connected, at any turn they cover the same distance, so there's no way to

make them turn unless you let one slip a bit.

www.syngress.com

36 Chapter 2 �9 Playing with Gears

Figure 2.25 Two Connected Wheels Go Straight

Figure 2.26 During Turns the Wheels Cover Different Distances

www.syngress.com

Playing with Gears �9 Chapter 2 37

The next phase of our experiment requires that you now build the assembly shown in

Figure 2.27.You see a differential gear with its three 12t bevel gears, two 6-length axles, and

four beams connected together to provide you with a way to handle this small system.

Placing the wheels again on your table, you will notice that while pushing them, you can

now easily turn smoothly in any direction. Please observe carefully the body of the differen-
tial gear and the central bevel gear: When the wheels go straight, the body itself rotates
while the bevel gear is stationary. On the other hand, if you turn your system in place, the
body stays put and the bevel gear rotates. In any other intermediate case, both of them rotate

at some speed, adapting the system to the situation. Differentials offer a way to put power to

the wheels without the restriction of a single fixed drive axle.

Figure 2.27 Connecting Wheels with the Differential Gear

To use this configuration in a vehicle, you simply have to apply power to the body of
the differential gear, which incorporates a 24t on one side and a 16t on the other.

The differential gear has many other important applications.You can think of it as a

mechanical adding/subtracting device.Again place the assembly from Figure 2.27 on your
table. Rotate one wheel while keeping the other from turning; the body of the differential

gear rotates half the angular velocity of the rotating wheel.You already discovered that when
turning our system in place, the differential does not rotate at all, and then when both
wheels rotate together, the differential rotates at the same speed as well. From this behavior,

we can infer a simple formula:

(lavl + lav2) / 2 = Oav

38 Chapter 2 �9 Playing with Gears

where Oav is the output angular velocity (the body of the differential gear), and Iavl and

lav2 are the input angular velocities (the two wheels). When applying this equation, you must

remember to use signed numbers for the input, meaning that if one of the input axles rotates

in the opposite direction of the other, you must input its velocity as a negative number. For

example, if the right axle rotates at 100 revolutions per minute (rpm) and the left one at 50
rpm, the angular velocity of the body of the differential results in this:

(100 rpm + 50 rpm) / 2 = 75 rpm

There are situations when you deliberately reverse the direction of one input, using idler

gears, to make the differential sensitive to a difference in the speed of the wheels, rather than

to their sum. Reversing the input means that you must make one of the inputs negative. See

what happens to the differential when both wheels run at the same speed~let 's say, 100
rpm:

(100 rpm - 100 rpm) / 2 = 0 rpm

It doesn't move! As soon as a difference in speed appears, the differential starts rotating
with an angular velocity equal to half this difference:

(1 0 0 r p m - 9 8 r p m) / 2 = 1 rpm

This is a useful trick when you want to be sure your wheels run at the same speed and
cover the same distance: Monitor the body of the differential and slow the left or right

wheel appropriately to keep it stationary. See Chapter 8 for a practical application of this
trick.

Summary
Few pieces of machinery can exist without gears, including robots, and you ought to know
how to get the most benefit from them. In this chapter, you were introduced to some very
important concepts: gear ratios, angular velocity, force, torque, and friction. Torque is what
makes your robot able to perform tasks involving force or weight, such as lifting weights,

grabbing objects, or climbing slopes.You discovered that you can trade off some velocity for
some torque, and that this happens along rules similar to those that apply to levers: The

larger the distance from the fulcrum, the greater the resulting force.

The output torque of a system, when not properly directed to the exertion of work, or

when something goes wrong in the mechanism itself, can cause damage to your LEGO

parts.You learned that the clutch gear and belts and pulleys are precious tools to limit and

control the maximum torque so as to prevent any possible harm.

In addition to straight gears, you were also introduced to bevel and double bevel gears.

Bevel gears are useful to transfer motion between perpendicular axles. Double bevel gears

can transfer motion between both perpendicular and parallel axles, as can the knob wheel.

w w w . s y n g r e s s . c o m

Playing with Gears �9 Chapter 2 39

Gears are not the only way to transfer power; we showed that pulley-belt systems, as well

as chains, may serve the same purpose and help you in connecting distant systems. Belts pro-
vide an intrinsic torque-limiting function and do well in high-speed, low-torque situations.
Chains, on the other hand, don't limit torque but do increase friction, so they are more suit-
able for transferring power at slow speeds.

Last but not least, you explored the surprising properties of the differential gear, an

amazing device that can connect two wheels so that they rotate when its body rotates, still
allowing them to turn independently. The differential gear has some other applications too,
because it works like an adder-subtracter that can return the algebraic sum of its inputs.

If these topics were new to you, we strongly suggest you experiment with them before
designing your first robot from scratch. Take a bunch of gears and axles and play with them
until you feel at ease with the main connection schemes and their properties. This will offer
you the opportunity to apply some of the concepts you learned from Chapter 1 about
bracing layers with vertical beams to make them more solid (when you increase torque,

many designs fall apart unless properly reinforced).You won't regret the time spent learning

and building on this knowledge. It will pay off, with interest, when you later face more
complex projects.

www.syngress.com

This Page Intentionally Left Blank

Chapter 3

Controlling Motors

Solu t ions in th is chapter :

• Pacing, Trotting, and Galloping

• Mounting Motors

• Wiring Motors

• Controlling Power

• Coupling Motors

42 Chapter 3 �9 Controling Motors

Introduction
Motors will be your primary source of power.Your robots will use them to move around, lift

loads, operate arms, grab objects, pump air, and perform any other task that requires power.

There are different kinds of electric motors, all of them sharing the property of converting

electrical energy into mechanical energy. In this chapter, we will survey different kinds of LEGO

motors and will discuss how to use, mount, connect, and combine them.

Before entering the world of motors, we would like to introduce you to some basic

concepts about electricity.You should be aware of a very important distinction concerning

the two types of electrical current: alternatino ~ current (AC) and direct current (DC). Alternating

current is the type of electricity that comes out of the wall outlets in your house, whereas

batteries are the most typical source of direct current. All the electric LEGO devices,
including motors, work with DC only.

To understand what DC is, imagine a stream of water going down a hill. Electricity

flowing through a wire is not very different: When you connect a battery to a device such as

a lamp or a motor, you enable a circuit through which electricity flows more or less like
water in a stream.You know that batteries have positive (+) and negative (-) signs stamped

on them: These signs indicate two poles, where the electrons flow from minus to plus, as

though the minus pole were the top of the hill and, as a result, the current flows from plus

to minus.You can place a water mill along a stream to convert the energy of water into
mechanical energy; similarly, an electric motor converts an electric flow into motion. What

would happen to the water mill if you could reverse the direction of the stream? It would
change its direction of rotation. The same happens to DC motors. Every motor has two

connectors, one to attach to the negative pole and the other to connect to the positive end

of a DC source.You can imagine the current flowing from the positive pole of the battery
into the motor, making it move and then coming out again to return to the negative pole of
the battery. If you reverse the polarity, that is, if you swap the wires between the motor and

the battery, you will change the direction of the stream and, thus, the direction of the motor.

Continuing with our hydraulics metaphor, how would you describe the quantity of
water that's flowing in a stream? It depends on two factors: the speed of the water, and the
width of the stream. Both of them have an influence on the kind of work your mill can

perform. In the realm of electricity, the speed of the stream is called voltage, and its width

(its intensity) is called current. They are respectively expressed in volts (V) and amperes (A),

or sometimes in their submultiples, millivolts (mV) and milliamperes (mA). The amount of

work that an electrical flow can pe r fo rm~fo r example, through a moto r~depends on

both of these quantities. To be more precise, it depends on their product, called power, and is
measured in watts (W).

All motors are designed to run at a specific voltage, but they are very tolerant when it

comes to decreases in the supplied voltage. They simply turn more slowly. However, if you

www.syngress.com

Controling Motors �9 Chapter 3 43

increase the voltage above the specific limit for a motor, you stand a good chance of burning

it out.
Current has a different behavior. It's the motor that "decides" how much current to

draw according to the work it's doing: The higher the load, the greater the current. The situ-

ation you should avoid at all costs when working with your N X T is to have the motor stall

(it is connected to the power source but something prevents it from turning). What happens

in this case is that the motor tries to win out against the resistance, drawing in more current

so that it can convert it into power, but as it doesn't succeed in the task, all that current

becomes thermal energy instead of mechanical e n e r g y ~ i n other words, heat. This is the most

dangerous condition for an electric motor .And here is where use of clutch gear comes into

play, limiting the maximum torque and thus preventing stall situations.You will discover later

in the chapter that the N X T also has an active role in protecting your motors from dan-

gerous draws of current.

Pacing, Trotting, and Galloping
Every motor contains one or more coils and permanent magnets that convert electrical

energy into mechanical energy, but you don't really need to know this level of detail. What

you, as a robot builder, must remember is that every motor has a connector through which

you can supply it energy, and an output shaft which draws the power. The current LEGO

T E C H N I C line includes several motors.All of these are 9V D C motors and have different

properties and features for various applications (as shown in Figure 3.1): the ungeared motor

(a), the geared motor (b), the micromotor (c), the R C motor (d), and the N X T servo motor

(e). Recently, LEGO also introduced the Power Function system, which includes two more

motors (f and g). There are other special motors as well: the train motor, the geared motor
with battery pack, and the Micro Scout unit. These are less common, less versatile, and less

useful to robotics than the ones featured here, so we won' t be examining them here.

Figure 3.1 The LEGO TECHNIC Motors

44 Chapter 3 �9 Controling Motors

Table 3.1 summarizes the properties of these motors.

www.syngress.com

Controling Motors ~ Chapter 3 45

Table 3.1 Properties of the LEGO TECHNIC Motors

Minimum Maximum
Maximum Current Current
Voltage (No Load) (Stall)

Maximum
Speed Speed under
(No Load) Typical Load

Ungeared motor 9V DC 100 mA 450 mA
Geared motor 9V DC 10 mA 250 mA
Micromotor 9V DC 5 mA 90 mA
RC motor 9V DC 160 mA 3.2 A

NXT servo 9V DC 60 mA 2 A
motor 12 V DC*
Power Function 9V DC 60 mA 2 A
large motor
Power Function 9V DC 60 mA 2 A
medium motor

4,000 rpm 2,500 rpm
350 rpm 200-250 rpm
30 rpm 25 rpm
1,300 rpm 900-1,200

rpm
170 rpm 100-130 rpm

250 rpm 175-200 rpm

450 rpm 325-375 rpm

Handles for short periods; however, this is not recommended for extended
periods.

The ungeared motor (a) has been the standard LEGO T E C H N I C motor for a long
time. Its axle is simply an extension of the inner electric motor shaft, and for this reason we

called it ungeared. Electric motors usually rotate at very high speeds, and this one is no
exception, turning at more than 4,000 rpm (revolutions per minute). This makes this motor
a bit tricky to use, because it requires very high reduction ratios for almost any practical
application, leading to very cumbersome and complex geartrains. Add the fact that it draws
an amazing amount of current, and you get a pretty good picture of how difficult it can be.

This motor is still easy to find in the shops of many countries as an expansion pack
(8720), but you may want to consider other types of motors for the reasons mentioned in
the preceding paragraph. In this book, you won't find any example that includes the
ungeared motor. Nevertheless, if you already have one, you can safely use it; it won't damage
your N X T or be damaged itself. The only risk you're taking is that, under heavy loads or

stall situations, it drains your batteries very quickly.

The geared motor (b) features an internal multistage reduction geartrain and turns at
about 350 rpm with no load (typically 200-250rpm with medium load). It's much more

efficient than the ungeared kind, and it has low current consumption. It also uses more

compact geartrains. If you have the old M I N D S T O R M S P, CX kit, you already have two of
these.

The micromotor (c) is a geared motor as well. It's geared down so much that its output

shaft turns at approximately 30 rpm. Nevertheless, its torque is incredibly low, well below 1

www.syngress.com

46 Chapter 3 ~ Controling Motors

Ncm. It is also surprisingly noisy, and very easy to jam. At this point, you might wonder why

you should ever consider this motor, but the answer lies in its name: because it's micro.

Sometimes the size of the motor is more critical than the amount of torque and speed

needed. To be used, it requires some special mounting brackets, and a small pulley to connect
to its shaft (Figure 3.1c).

The K C motor (d) is a geared motor with approximately 1,300 rpm without load and
900 rpm under medium load. Output is delivered through a bush to join axles. It features
two outputs turning at different rpms and opposite directions. The farther output is running
at about 1,000 rpms without load.The higher rpm output delivers lower torque than the
other.

The N X T servo motor (e) is not only geared, but also has other electronics to provide
precise positioning information. This motor runs at lower rpms, but has very high torque. In
the next section, you will see how to connect these motors to your NXT.

The new Power Function system motors (f and g) are also geared motors and have a

special electrical connector. These motors are compact and versatile for use in small places.

www.syngress.com

Controling Motors �9 Chapter 3 47

Internals of NXT Servo Motor
Servo motors in industrial applications are different from regular motors because of their
capability to precisely rotate the motor shaft. This is achieved by special electronics built into

the motors. Similarly, the N X T servo motors are advanced in their capabilities and precision.
Philippe Hurbain's Web site, N X T motor internals, is an excellent place to learn more about

the internals of these motors (refer to Appendix A), and some of his material is included in

the following section.
N X T servo motors have a built-in optical encoder that keeps count of rotations of the

motor shaft (see Figure 3.2). This encoder is accurate up to 1 degree of motor rotation.You

can use this property from your program for precise movement or positioning:

while (nMotorEncoder[motorA] < I000)

// wait for motor to reach a specific location

{
�9 .

}

This property can also keep two motors synchronized with each other and move your

robot along a straight line.

Figure 3.2 Optical Encoder in NXT Servo Motor

48 Chapter 3 ~ Controling Motors

The N X T servo motor also has built-in gears to reduce the rpms and increase the

torque (see Figure 3.3). This desirable feature makes it easier to build robots without exces-

sive geartrains, thereby reducing the complexity and size of your robot.

Figure 3.3 Internal Gears of NXT Motor

Image �9 The LEGO Group. Used here by special permission.

Mounting Motors
The N X T servo motor is designed for integration into the studless construction of your

robot. The large rounded end is about 7 units (T E C H N I C holes) high and 5 units wide,
whereas the orange end of the motor is 3 units wide and 3 units high. Overall, the motor is
about 14 units long, and due to its unusual shape, it requires some experience to mount on
your robot. In the following paragraphs, we will discuss a few common solutions, as well as
how to take advantage of this shape in your construction.

Despite its unusual shape, the N X T servo motor fits well within the standard
T E C H N I C grid. The elongated shape of the motor makes it easy to integrate with the pri-
mary chassis of your robot. While designing your robot, try to integrate the motors in the
early stages of the design, or build the robot assembly around the motors. In Figure 3.4 (a),
you can see that the large rounded end has two built-in three-hole beams on top, which you
can connect to your robot's structure using T E C H N I C pins. In Figure 3.4 (b), you can see
the holes which can be connected using T E C H N I C double pins.

Controling Motors �9 Chapter 3 49

Figure 3.4 Mounting a Motor with TECHNIC Beams and Pins

The pictures here are mainly meant to illustrate possibilities. So, in order to
let you visualize, we didn't lock the pins and the beams to the motor. In
actual applications, you will complete the assembly and extend it for your
needs.

In Figures 3.4a and 3.4b, the top-right end of the motor has a through hole, and the
axle fits snugly into it. For simple mobile robots, you can choose to attach wheels directly

onto this axle. This end also has one built-in three-hole beam to which you can connect
your robot's structural beams or pins.

When it comes to transferring power along a different axis or to a different location, you
have plenty of choices, but essentially you will use gears. With the high torque delivered
from the N X T motor, belts are not very effective unless you can tolerate a lot of slippage.
Figure 3.5 (a) shows one such assembly. Experiment with other pairs, as shown in Figure 3.5
(b), to see which best suits your needs.

As we said earlier, N X T motors are suitable for integration into your robot's structure,
but when you need to reuse them in other projects, it's a challenge to keep them easily
removable, while keeping the rest of the robot intact. When planning for a removable motor

in your design, consider attaching motors with T E C H N I C pins and a stop bush (see Figure

3.6).These bushes are easy to hold, and it's also easy to use them to pull the pins. Try to

keep the connections along a single plane which effectively separates the motor from your
robot's structural design, thus keeping your robot intact when the motor is removed.

r �9

www.syngress.com

50 Chapter 3 �9 Controling Motors

Figure 3.5 Transferring Power to a Different Axis

Figure 3.6 An Easily Removable Motor

Have you wondered how to connect the studded motors to studless beams? If you have

R C X motors, the easiest method is to use some of your T E C H N I C bricks with holes to

moun t the motor (Figure 3.7). Use the 1 x 2 plates with rails as brackets for the motors, and

use T E C H N I C bricks to hold the motors in place. Moun t the studless beams over the

T E C H N I C bricks. Also, for additional stability at the back, you can use a T E C H N I C axle

joiner with four pins.

Controling Motors �9 Chapter 3 51

F igure 3.7 Attaching an Old Geared Motor to Studless Beams

Wiring Motors
The M I N D S T O R M S N X T wiring system uses jacks similar to telephone jacks. Though

they look similar, you cannot use regular phone wires in them. That also will keep some cre-

ative minds from plugging the N X T into the telephone network.

As we already explained, these motors are DC motors, and therefore, they are sensitive to

the polarity with which you connect them. With N X T wiring systems, you cannot go wrong

with the polarity. But if you are connecting old motors with the N X T using a compatibility

cable, you will have to consider the polarity or control this property from your program.

How can you test your motors without adjusting your programming? Here are some

suggestions:

�9 T h e N X T console Power on the N X T and press the scroll button on your

N X T console until it reads N X T Program. Select the program using the center

orange button. This is a built-in test program which allows you to create a mini

program on the NXT.You can control up to two motors in this mini program.

�9 T h e R o b o t C sof tware You can use R o b o t C to directly control the NXT. From

the Robot menu, select the N X T B r i c k submenu, followed by the Poll B r i c k

submenu. In the resulting window, you can control the motors directly through the

Set values in to N X T interface.

�9 An ex te rna l b a t t e r y box Various kinds of battery boxes are available, as shown

in Figure 3.8 (a) and (b). With a box such as this and an N X T converter cable such

as the one shown inFigure 3.8 (c), you can test your motor without the NXT.

52 Chapter 3 �9 Controling Motors

Figure 3.8 LEGO Battery Boxes and Converter Cable

A B l u e t o o t h d e v i c e You can use a Java-capable and Bluetooth-enabled cell

phone to send messages to the NXT. Using a joystick or command wheel on your

phone you can control two motors on the NXT. This is very useful for testing your

robot during the building phase, especially when it is hard to reach the N X T con-

sole.

O t h e r sources All the components of the LEGO 9V electric system are compat-

ible with each other. If you have a LEGO train speed regulator, or a Control

Center unit, you can safely use them to run your motors using an N X T converter

cable.

In some cases, you want to control more motors than the N X T ports can support. Or

you may want to attach power-hungry motors to your robot, but conserve the N X T battery.

For such applications, you can use a Motor Multiplexer from Mindsensors (see Figure 3.9).

This multiplexer can conveniently attach up to four additional motors using RCX-style

connectors. It supplies power to these additional motors from an external battery, thus con-

serving the N X T battery.You can also connect N X T servo motors using a converter cable.

Using Power Function Motors with the NXT
The new Power Function system is also a 9V D C system like the NXT. Because these mod-

ules use a different electrical connector, it will be a bit of a challenge to use these motors

directly with N X T robots. LEGO will be developing a converter cable to connect the

Power Function system with the old 9V system. And with the converter cable already devel-

oped between the N X T product and the old LEGO 9V system, it will be possible to use the

LEGO Power Function together with M I N D S T O R M S N X T using these converter cables.

www.syngress.com

Controling Motors �9 Chapter 3 53

Figure 3.9 Multiplexing Motors on the NXT

The Power Function system has its own battery box and an infrared controller (see

Figure 3.10). Mindsensors will be extending its N R L i n k to support communicat ion with

this controller. Using NRLink , the N X T can send commands to control the Power

Function motors. This way, you can use the Power Function battery box on your robot, and

conserve the N X T battery.

54 Chapter 3 �9 Controling Motors

F igure 3.10 Controlling Power Functions Using an IR Interface

Controlling Power
You know that your program can control the power of your motors. In fact, using the
l<obotC setMotorPower 0 method will set the power in the range of-100 to +100, where
negative values indicate reverse direction:

/ / enable motor speed regulation

nMotorPIDSpeedCtrl [motorA] = mtrSpeedReg;

// move at half speed

motor[motorA] = 50;

But what happens when you change this number? And why do we care? There are dif-
ferent ways to control the power of an electric motor. The LEGO train speed regulator con-
trois power through voltage: The higher the voltage, the higher the power.The N X T uses
the same approach as the lZCX, called pulse width modulation (PWM).

To explain how this works, imagine that you continuously and rapidly switch your
motor on and off. The power your motor produces in any given interval depends on how
long it's been on in that period. Applying current for a short period of time (a low duty cycle)
will do less work than applying it for a longer time. If you could switch it on and off hun-

www.syngress.com

Controling Motors �9 Chapter 3 55

dreds of times a second, you would see the motor turning in an apparently normal way; but

under load you would notice a decrease in its speed, due to a decrease in the supplied power

(Figure 3.11).

Figure 3.11 Pulse Width Modulation Power Levels

This is exactly what the N X T does. Its internal motor controller can switch the power

on and off very quickly (an on/off pulse every millisecond), at the same time varying pro-

portion between the on and off pulses. At power level 1, for every 100 pulses applied, the

motor receives one on pulse; at power level 25, for every 100 pulses applied, the motor

receives 25 on pulses; and so on, until you reach level 100, when all pulses are on.

Why do we care about this technical stuff?. Because this explains that you aren't actually
controlling speed, but power. LEGO motors are very efficient, and when the motor has no
load or a very small load, lowering the power level won't decrease its speed very much.
Under more load, you will see how the power level affects the resulting speed too.

Detecting Motor Overload
Often, one would like to check whether the N X T servo motors are working properly.

Two c o m m o n problems encountered with motors are stalling and slipping. The former

happens when the load on the motor exceeds its maximal power, leading to a "frozen"

motor. Checking if your motors are stalled is relatively easy by moni tor ing the motor

encoders. If the motor should be running but its encoder doesn't increment (or it incre-

ments less than your threshold), it is stalled. Slipping occurs, for example, when your robot

is stuck at a wall, but the wheels lose their grip and rotate in place. Detecting slip is more

difficult than detecting stall. Guy Ziv at NXTasy.org has developed a Motor Power Meter

N X T - G block that allows you to moni tor the load on the motor. W h e n the motor slips,

its power is usually larger than that experienced during normal operation, which allows

detection of slip conditions.

www.syngress.com

56 Chapter 3 �9 Controling Motors

Braking the Motor
Controlling the power means also being able to brake your motor when necessary. For this

purpose, the N X T features a sort of electric brake. Once again, let us explain how it works

through an experiment.

Assemble the motors as shown in Figure 3.12. Note that motor (b) is locked by a beam,

resulting in a stall, effectively causing motor (a) to be shorted. We know that a short circuit
sounds like a bad thing, but in this particular case we mean only that the circuit is closed.
Don' t worry; your motor is not at any risk. N o w try to turn the 24t with your fingers.You

see? The motor offers a lot of resistance, and as soon as you stop turning, it stops too. N o w

disconnect motor (b) from the cable and try to turn the 24t again: It turns smoothly, and it

continues to spin for a while after you have stopped turning it.

Figure 3.12 An Electric Brake

What happened? Not only is an N X T motor able to transform electricity into motion,

it does the opposite too: It can be used to generate electricity. In our experiment, when

motor (a) is shorted, the generated current is sent back into the motor, producing a force

that resists the motion. This is a simple but effective technique which the N X T implements

to brake the motor: When you set the motors to brake, the N X T not only switches the

power off, but it also short-circuits the port, making the motor brake.

www.syngress.com

Controling Motors �9 Chapter 3 57

Coupling Motors
If you need more power for a task than a single motor can deliver, you will very likely need

to mechanically couple the motors, meaning that they will work together to operate the same

mechanism, sharing its load. It's like when you have to move something really heavy and you

call a friend to help you: Each member of the party bears only half the total weight. Though

this rule works for all electric motors in general, a specific limitation applies when attaching

multiple motors to the NXT: Its current-limiting device won't allow the motors to draw as

much current as they want. Consider it a constraint to the maximum power each port can

pay out.
In Figure 3.13, you can see two motors connected using a single axle to a 40t gear

wheel. People often wonder whether connections such as these are going to cause any prob-

lems to the motors. The answer is simply no. Unless you keep one of the motors stalled for

more than a brief moment, they are not easy to damage. In applications such as the one in

Figure 3.13, you just have to be sure the motor power of one motor doesn't oppose that of

the other. The N X T wiring won't let you do it incorrectly. However, we suggest that you

double-check your program to ensure that both motors are turning in the same direction.

It is true that no two motors turn at exactly the same speed, or output the same torque,

but this doesn't cause any conflict. A motor doesn't know that another motor is cooperating

on the same task. It simply reacts to the load, absorbing more current and trying to keep the

speed. This works even if the motors are of different types, even if they are powered at dif-

ferent levels, and even if they are geared with different ratios.

58 Chapter 3 �9 Controling Motors

Figure 3.13 Two Mechanically Coupled Motors

If you're not convinced of this, think of a simple vehicle propelled by a single motor.
When the path becomes steeper, the load on the motor increases, causing it to reduce its
speed. Essentially, the motor adapts itself to the load. The same happens when two motors
work together; they share the load and mutually adapt themselves.

To make things easier, you can use the Synchronized Motors feature available in
RobotC to run the motors together:

nSyncedMotors = synchNone; // No motor synchronization

nSyncedMotors = synchAC; // Motor 'C' is slaved to motor 'A'

Have you ever tried riding a tandem bicycle? Your partner might be much weaker than
you, but you would prefer him to pedal rather than simply ride along, watching the land-

scape.

Controling Motors �9 Chapter 3 59

Summary
N X T motors are easy and safe to use, but they require a bit of experience to get the most

from them.You have seen that wiring N X T motors is very simple and you cannot go wrong

with the polarity. The different mount ing options require some knowledge and a bit of prac-

tice, especially if you need to keep the motors easily removable.

O n the topic of coupling motors, this option is useful when you want to split a load

over two or more motors to reduce their individual efforts. The only important thing to

remember is that you must run them in the same direction to avoid any dangerous conflict

situation in which one motor opposes the other.
As a general tip, we suggest that you make intense use of prototyping. Don ' t wait to

finish your robot to discover that a motor is in the wrong place or has not been geared

properly. Test your mechanisms while you are building them.

This Page Intentionally Left Blank

• ~ i ~

Chapter 4

Reading Sensors

Solutions in this chapter"
Digital Sensor Ports with the 12C (Inter-Integrated)
Interface

= The Touch Sensor

The Light Sensor

• The Ultrasonic Sensor

= The Servo Motor Encoder (Rotation Sensor)

Sensor Tips and Tricks

• Other Sensors

62 Chapter 4 �9 Reading Sensors

Introduction
One of the most important components of a robot is the sensor. The primary purpose of a

sensor is to allow the robot to interact with its environment and perform actions based on

feedback from its surroundings. This process is called autonomy, which by definition means

freedom from external law. An autonomous robot is a self-governing device that takes input

from its sensors and makes decisions based on this input. This tends to be the difference

between those battle-bots you see on TV which are controlled remotely and an N X T sumo-

robot that has to maintain its position within a ring while trying to push its opponent out.

Since the advent of the LEGO M I N D S T O R M S Robotics Invention System (RIS) in

1998, a significant demand has developed for aftermarket sensors. With the initial release of

the RIS, it was difficult at first to find aftermarket sensors, and many people were stuck with

the touch, rotation, and light sensors included with the kit. Few were honored to have a set

of the Cybermaster touch sensors that allowed for sensor multiplexing.

The introduction of the LEGO M I N D S T O R M S N X T has changed this. Not only is

the N X T compatible with most legacy R C X sensors such as the light, rotation, temperature,

and touch sensors, but also it is compatible with the numerous aftermarket sensors that

started to make their debut near or at the time of release of the N X T product (more are still

to come). In fact, at the time of this writing, more than 15 aftermarket sensors and commu-

nication adapters were available from third-party vendors.

Out of the box, the N X T comes with the standard light and touch sensors, and has

added the new ultrasonic and sound sensors as well as built-in motor encoders (rotation sen-

sors) to the three servo motors.This chapter will look at these N X T sensors with a focus on

the new additions as well as a variety of third-party sensors. We will also look at the new I2C

digital interface as well as some other unique aspects of the N X T system.

Digital Sensor Ports with the
12C (Inter-Integrated Circuit)Interface
The sensor interface of the N X T system has changed significantly. At first glance, you will

notice that LEGO added an additional sensor port (there are now four ports).The wiring

for sensors and motor connections has changed as well. It now uses a six-wire cable con-

nector that uses an RJ-12-1ike connector that features an offset locking latch and is smaller

than the standard RJ-12. These wires allow the N X T to support legacy analog, passive, and

newer digital sensors via the I2C interface.

This custom connector is used to ensure that someone does not inadvertently try to

connect his N X T to his telephone jack, or to a network hub. It is also used because the I2C

interface has specific dedicated wires that must be plugged in one way only. LEGO has dedi-

cated each wire as follows:

Reading Sensors �9 Chapter 4 63

�9 Pins 1 and 2 have the same functionality as the legacy 1KCX sensor cables which

enable the N X T to read values from the touch, light, sound, and other legacy
analog sensors. Note that you can get converter cables for legacy sensors from many
third-party vendors, or you can make your own, such as the one detailed on Phillip

Hurbain's Web site (see Appendix A).

�9 Pin 3 is grounded.

�9 Pin 4 provides a constant voltage (~ 4.3 V).

�9 Pins 5 and 6 are used to communicate with the digital sensors via the I2C serial

bus. The ultrasonic, color, and digital compass sensors (to name a few) are accessed

using this method.

The I2C interface is a multimaster serial computer bus developed in the 1980s by Philips

Semiconductor. It was initially used to connect low-speed peripherals to motherboards,

embedded systems, and so on. It's likely that the computer you are using right now has some

form of 12C implemented, such as hardware to read its C PU temperature.
The N X T brick has an I2C communication channel for each of the four input ports.

The I2C serial bus uses pins 5 and 6 ~ w i t h pin 5 carrying the clock signal and pin 6 car-

rying the data signal. The N X T acts as the "master," always invoking communications, and

the sensor acts as the slave. This system supports up to 128 different slaves (or addresses). Can
you imagine the possibilities? How about a combination of 128 motors and sensors, all mul-
tiplexed on the same port? Don' t sweat it; these ideas are already being addressed with third-
party sensor suppliers such as HiTechnic and Mindsensors. Both have created sensor and

motor multiplexers.
The general communication flow is as follows:

�9 The master (NXT) initiates communications with the slave (sensor).

�9 The master sends a start message with an address, and then sends a command.

�9 The master waits for a reply.

�9 The slave responds.

�9 The master reads the response and code provides further actions for the robot.

LEGO used I2C for the ultrasonic programming block in NXT-G (LEGO's N X T

graphical programming software). At the time of this writing, new custom I2C NXT-G

sensor blocks have been appearing weekly on fan-related blogs (e.g., www.nxtasy.org) that

are opening up NXT-G to allow for custom sensor integration into this graphical develop-

ment environment. Robo tC has I2C functionality built in, with many samples already avail-

able; you simply need to know the memory address locations of the registers from which to
read the sensor results, which are typically provided by the vendor that is selling the sensor.

In most cases, vendors also have sample code that you can use to get started.

64 Chapter 4 �9 Reading Sensors

NXT-G is the programming environment LEGO provides with the NXT set. It is
developed by National Instruments and provides you with a graphical inter-
face for programming your NXT robot. It is easy for people of all ages to use
to program their robots. Chapter 7 provides more detail on NXT-G as well as
other third-party development platforms.

12C integration on the N X T allows you to add digital devices to your robots. Digital

devices have the added advantage of being able to include parameters such as device names,

configuration parameters, calibration information, and so on. This makes these devices smart

and allows for additional devices to be developed to the same standard. It also allows them to

be chained much in the same way that USB devices can be chained with USB hubs.

LEGO chose to implement I2C on the NXT, which has opened the door for a variety

of sensors that will work with the NXT. 12C is one of the most significant improvements to

the MINDSTOP, MS N X T and will open the door for a plethora of sensors, devices, and
communications adapters for years to come. Now you will be able to make that 28-motor

walking robot that you always dreamed off

Continued

Reading Sensors �9 Chapter 4 65

The Touch Sensor
The touch sensor (see Figure 4.1) is probably the simplest and most intuitive member of the

LEGO sensor family. Other than having the N X T "look," not much has changed with this

sensor. The most notable difference is a migration to the three-hole studless connection and

the axle slot on the front. It works more or less like the pushbutton portion of your door-
bell" When you press it, a circuit is completed and electricity flows through it. The N X T is

able to detect this flow, and your program can read the state of the touch sensor

Figure 4.1 The Touch Sensor

One of the sensor's most common applications is to act as a bumper. Bumpers are a

simple way of interacting with the environment; they allow your robot to detect obstacles

when hit, and to change its behavior accordingly.
In NXT-G the sensor block has three states: pressed, released, and bumped. These are

important, as they enable you to determine how your robot will react in different situations.

For example, envision a robot that uses the sensor to detect the passing of an object on a

conveyor. If that object gets stuck, the sensor state remains "pressed"; if it passes, the state is
"bumped."You could program your robot such that it reacts to "pressed" by reversing the
conveyor temporarily to get the object unstuck. Alternatively, in RobotC, you would build a

function that watches the sensor. Once pressed, it would monitor the time that it remains

pressed. If this time exceeds a predefined limit, you could trigger your robot to react accord-

66 Chapter 4 ~ Reading Sensors

ingly. This method works particularly well in sumo-robot competitions.You configure the

sensor to detect when you are in contact with your opponent. When the sensor state is

pressed, you continue in the direction you were going, and maybe even power up the

motors, assuming you are pushing your opponent out of the ring.

A bumper typically is a lightweight mobile structure that actually hits the obstacles and

transmits this impact to a sensor, closing it.You can invent many types of bumpers, but their
structure should reflect both the shape of your robot and the shape of the obstacles it will
meet in its environment. A very simple bumper, such as the one in Figure 4.2, could be per-

fectly fine for detecting walls, but might not work as expected in a room with complex

obstacles, such as chairs. In such cases, try experimenting. Design a tentative bumper for your
robot and move it around your room at the proper height from the floor, checking to see

whether it can detect all the possible collisions. If your bumper has a large structure, don't
take it for granted that it will impact the obstacle in its optimal position to press the sensor.

Our example in Figure 4.2 is actually a bad bumper, because when contact occurs, it hardly

closes the sensors at the very end of the traverse axle. It's also a bad bumper because it trans-
mits the entire force of the collision straight to the switch, meaning an extremely solid

bracing would be necessary to keep the sensor mounted on the robot.

Figure 4.2 A Simple Bumper

Be empirical. Try different possible collisions to see whether your bumper works prop-

erly in any situation.You can use the built-in touch sensor test program on the N X T brick

Reading Sensors �9 Chapter 4 67

which will display the status of the sensor on the LCD, or write a very short program that
loops forever, producing a beep when the sensor closes, and use it to test your bumper.

When talking of bumpers, people tend to think they should press the switch when an
obstacle gets hit. But this is not necessarily true. They could also release the switch during a
collision. Look at Figure 4.3. The rubber bands keep the bumper gently pressed against the
sensor; when the front part of the bumper touches something, the switch gets released.

Figure 4.3 A "Normally Closed" Bumper

Actually, there are some important reasons to prefer this kind of bumper:

Because of its ability to be connected via studless beams, the new N X T touch
sensor is sturdier than the legacy R C X one. However, you still want to minimize

the impact force on parts. With this setup, the force doesn't transfer to the sensor

itself.

The rubber bands absorbing the force of the impact preserve not only your sensor,

but also the whole body of your robot. This is especially important when your

robot is very fast, is very heavy, is very slow to react, or possesses a combination of

these factors.

Bumpers are a very important topic, but touch sensors have an incredible range of other

applications.You can use them like buttons to be pushed manually when you want to

68 Chapter 4 �9 Reading Sensors

inform your N X T of a particular event. Can you think of a possible case? Actually, there are

many. For example, you could press a button to order your N X T to "take a reading of the

ultrasonic sensor now," and thus test distance readings. Or you could use two buttons to give

feedback to a learning robot about its behavior, good or bad. The list could be long.

Another very common task you'll demand from your sensor is position control.You see an

example of this in Figure 4.4. The rotating head of our robot mounts a touch sensor that

closes when the head looks straight ahead.Your software can rely on timing to rotate the

head at some level (right or left), but it can always drive back the head precisely in the

center simply waiting for the sensor to close.

Figure 4.4 Position Control with a Touch Sensor

There would be many other possible applications in regard to position control. What

matters here that you explore many different approaches before actually building your robot.

Let's create another example to clarify a bit. Suppose you're going to build an elevator.You

obviously want your elevator to stop at any floor.You may think of having a switch at every

level, so when one of them closes, you know that the cab has reached that level. Okay, nice

approach. There's one small problem, however; you have just one sensor, and an elevator with

only two floors doesn't seem like such an interesting project to you.You could buy more

sensors, but this simply pushes your problem one floor up, without solving the general case.

Meanwhile, you have used up most of the input ports of your NXT. Suddenly, an idea

occurs to you: Why not put the sensor on the booth instead of on the structure? With a

single sensor on the booth, and pegs that close it at any floor, you can provide your elevator

Reading Sensors �9 Chapter 4 69

with as many floors as you like.You see, by reversing our original approach, you found a

much better solution. Are the two systems absolutely equivalent? No, they aren't. In the first,

you could determine the absolute position of the booth, and in the second, you are able to

know only its relative position. That is, you do need a known starting point, so you can

deduce the position of the cab counting the floors from there. Either requires that the cab

be at a specific level when the program starts, or that it use a second sensor to detect a spe-

cific floor. For example, place a sensor at the ground level so that the very first thing your

program has to do when started is to lower the elevator until it detects the ground level.

From then on, it can rely on the cab sensor to detect its position.
N o w your elevator is able to properly navigate up and down.You have one last problem

to solve: H o w do you inform your elevator which floor to go to? Placing a touch sensor at

every floor to call the elevator there is impractical. What could you do with a single sensor?

Can you apply the previous approach here too?
Yes.You can count the pushes on a single touch sensor. For example, three clicks means

third floor, and so on. N o w you are ready to actually build your elevator! O f course, with

the advent of the integrated encoders in the N X T servo motors, this approach has limited

appeal. Later we will show you how you can address the same challenge with a single servo

motor to both move the elevator and detect which floor it is on.

Continued

70 Chapter 4 �9 Reading Sensors

Continued

Reading Sensors * Chapter 4 71

The Light Sensor
Saying that the light sensor (Figure 4.5) "sees" is definitely too strong a statement. Wha t it
actually does is detect ambient (surrounding) light and measure its intensity. But in spite of
its limitations, you can use it for a broad range of applications.

Figure 4.5 The Light Sensor

72 Chapter 4 �9 Reading Sensors

The most important difference between the touch sensor and the light sensor is that the

latter returns many possible values instead of a simple on /o f f state. These values depend on

the intensity of the light that hits the sensor at the time you read its value. In both NXT-G

and P,.obotC, default settings return values in the form of percentages ranging from 0 to

100. However, in R o b o t C you can also read the sensor in Raw mode. This allows for a

higher degree of granularity, returning values ranging from 0 to 1,023.
W h e n reading the sensor, the more light there is, the higher the percentage will be.

What can you do with such a device? A possible application is to build a light-driven robot,

a light follower as it's called, that looks around to find a strong (or the strongest) light source

and directs itself toward it. Provided that the room is dark enough not to produce interfer-

ence, you could then control your robot using a flashlight.

This ability to trace an external light source is interesting, but it's probably not the most
amazing thing you can do with this sensor. There is another feature of this device: Not only

does it detect light, but it emits some light as well. A small red LED provides a constant
source of light, thus allowing you to measure the reflected light that comes back to the
sensor. Both NXT-G and R o b o t C allow you to set the sensor to generate light (or not).

Continued

Reading Sensors �9 Chapter 4 73

Measuring Reflected Light
To illustrate the concept of measuring reflected light, let's prepare an experiment. Take your

NXT, turn it on, attach a light sensor to any input port, and configure the port properly

using the built-in test program on the NXT. Configure the sensor as Reflected Lig, ht and set

the port. Do a quick test. The red LED should illuminate. Prepare the environment.You

need a dark room, not necessarily completely dark, but there should be as little light as pos-

sible. The N X T sensor test program allows you to view the value of a sensor in real time on

the LCD screen. R u n the test program to begin viewing the sensor value. N o w you can

proceed. Put the sensor on the table. Take some LEGO bricks of different colors and place

them one by one at short distances from the sensor (about 0.5 inches, or 1 to 1.5 cm). Keep

all of them separated from each other at the same distance, and look at the readings.You will

notice how different colors reflect a different amount of light (you might want to write

down the values on a sheet).

For the second part of the experiment, take the white brick and move it slowly toward

the sensor and then away from it, always looking at the values in the display.You see how the

values decrease when you increase the distance.You can find a distance where the white

brick reads the same value you have read for the black one at a shorter distance.You cannot

tell the distance and the color at the same time, but if you know that one of the properties

doesn't change, you can calculate the other. It's important to stress again that in both cases,

you must do your best to shield your system from ambient light.

www.syngress.com

74 Chapter 4 �9 Reading Sensors

Li ne Fol Iowi ng
Probably the most widespread usage of the light sensor is to make the robot read lines or

marks on the floor where it moves. This is a way to provide artificial landmarks your robot

can rely on to navigate its environment. The simplest case is line following. The setup for this

project is very simple, which is one of the reasons it's so popular. Despite its apparent sim-

plicity, this task deserves a lot of attention and requires careful design and programming. Pay

attention to what happens when the sensor "reads" a black line on a light floor.

Reading Sensors �9 Chapter 4 75

W h e n the sensor is on the floor, it returns, say, 70 percent, whereas on the black line, it
returns 30 percent. If you move it slowly from the floor to the line or vice versa, you notice
that the readings don't leap all of a sudden from one to the other. They go through a series
of intermediate values. This happens because the sensor doesn't read a single point, but rather

a small area in front of it. So when the sensor is exactly over the borderline, it reads half the

floor and half the black strip, returning an intermediate result.

Is this feature useful? Well, sometimes it is, and sometimes it's not. W h e n dealing with

line following in particular, it is very useful. In fact, you can (and should) program your robot

to follow the "gray" area along the borderline rather than the actual black line. This way,

when the robot needs to correct its course, it knows which direction to turn: If it reads too

"dark," it should turn toward the "light" region, and vice versa.
W h e n you need to navigate a more complex a rea~one , for example, that includes

regions of three different colors~things get more difficult. Imagine a pad divided into three

fields: white, black, and gray. How can you tell the gray area from the borderline between

the white and the black areas? You can't, not from a single reading, anyway.You must take

into consideration other factors, such as previous readings, or you can make your robot turn

in place to make it gather more information and understand where it is. To handle a situa-

tion such as this, your software is required to become much more sophisticated.

O f course, with the advent of aftermarket sensors such as the HiTechnic color sensor,

variable colored line following may become more feasible. More on this later.

The light sensor is such a versatile device that you can imagine many other ways to

employ it.You can build a form of proportional control by placing a multicolored movable

block of LEGO parts in front of it. Figure 4.6 shows an example of this kind. W h e n you

push or pull the upper side of the beam, the sensor reads different light intensities.

76 Chapter 4 �9 Reading Sensors

Figure 4.6 An Analog Control with a Light Sensor

Combining the light sensor with a lamp brick (not included in the NXT kit) you get a
photoelectric cell (Figure 4.7); your robot can detect when something interrupts the beam
from the lamp to the sensor. Notice the double-split T E C H N I C axle joiner in front of the
sensor to reduce the possible interference from ambient light.

Figure 4.7 A Photoelectric Cell

Reading Sensors �9 Chapter 4 77

The Ultrasonic Sensor
One of the most anticipated additions to the N X T is the ultrasonic sensor (sometimes

referred to as the sonar sensor). This sensor had its origins as a third-party add-on sensor

developed by HiTechnic for the R C X . The idea of using sound to detect obstacles was pop-

ular enough that L E G O decided to make this sensor a standard part of the N X T kit. Figure

4.8 shows the sensor.

Figure 4.8 The NXT Ultrasonic Sensor

The principle behind ultrasonic detection is that the sensor emits high-frequency ultra-

sound (beyond the limit of human hearing), which bounces off objects and is read back by

the sensor. The time that each pulse takes to bounce back to the sensor determines the dis-
tance from it. The longer the interval, the further the object is, and vice versa. Bats use the

same principle as a means of navigating and of locating their prey. The technique is called

echolocation and allows bats to distinguish between an insect and a falling leaf. N o w there is

a challenge to try with your NXT!
A c o m m o n way to program the sensor is to set it up to constantly poll the environment,

and then use the value returned to enable your robot to react (e.g., steer away, or back up).

In both N X T - G and Robo tC , readings are normalized, returning values between 0 and 100.

N X T - G allows these to be set in inches or centimeters. R o b o t C also supports raw, un-nor -

malized readings; however, most just use the normalized values.

Here is a sample R o b o t C ultrasonic test program:

while (true)

{
nDist = SensorValue(sonarSensor) ;

nxtDisplayTextLine (i, "Distance- %d", nDist) ;

waitl0Msec(100) ;

78 Chapter 4 �9 Reading Sensors

eraseDisplay () ;

Try to build yourself a robot that can navigate a room without bumping into objects.
Figure 4.9 shows a sample robot built to test the ultrasonic sensor using a simple four-wheel

drive skid-steer loader platform.

Figure 4.9 CT1 Sample Robot Using the Ultrasonic Sensor

This is the first sensor from LEGO to implement the I::C interface described at the
beginning of this chapter. Through NXT-G, LEGO developed the sensor block to read the
I?C messaging and interpolate the values to provide a distance reading in inches or centime-

ters.
When choosing which sensor to use, you should remember the advantages and limita-

tions of each sensor type. In particular, the ultrasonic sensor has a wide range and is capable
of working with all lighting conditions (because it relies on sound only). On the other hand,

its beam is relatively wide (about 30 degrees), so even point objects appear broad when you

scan around with it. The IR sensors based on SHARP sensor technology (such as the new

Mindsensors.com IR sensor) have a narrow beam, giving better spatial resolution, but are

more sensitive to light conditions. Furthermore, the two sensor types have different "tastes"

with respect to target materials~ultrasound is absorbed by soft materials, making them

invisible to the ultrasonic sensor, whereas a mirror would reflect ultrasound back to the

sensor but prevent IR sensor detection.

Reading Sensors �9 Chapter 4 79

Proxi m ity Detection
Previously with the R C X , users who wanted to perform proximity detection were stuck
with limited options. One option was to purchase a third-party proximity sensor such as the
Techno-StuffDual Infrared Proximity Detection (DIRPD) sensor.This sensor, combined

with a language such as N Q C , could be programmed to detect left, right, and center obsta-

cles and proved very effective at navigation and obstacle avoidance. To demonstrate its effec-

tiveness, look at the WallFollower robot at www.plastibots.com. Another option was to use

the standard light sensor with the R C X IR communication feature. With some N Q C code,

one could program the R C X to send pulses of IR and have the light sensor read these. The

timing of response for them would yield a distance reading.
The introduction of the ultrasonic sensor to the N X T provides similar functionality out

of the box. Through NXT-G, you can quickly write a simple program that can be used to

detect obstacles in front of your robot and have it react accordingly.You can try doing this
yourself by building TriBot from the NXT-G Robo Center and configuring it such that the

sensor is used to avoid obstacles as it drives around.
Fans such as Guy Ziv (at www.nxtasy.org) have gone a step further and taken advantage

of the I2C interface to use the sensor in "ping" mode. What does this mean? Well, out of the

box, you really can use one of these sensors on only one robot at a time. If you try to con-

figure two ultrasonic sensors to run at the same time, both sensors get initialized when the

program starts, each will emit ultrasound at the same time and cause confusion between

readings due to bouncing signals between them.
To solve this, Guy used a custom block in NXT-G by configuring two sensors on the

same robot and having the software alternate (at a rapid pace) the sending and reading of

ultrasound for each sensor. The general process is as follows:

�9 Ultrasonic Sensor 1: Send signal (ping), read result, store value.

�9 Ultrasonic Sensor 2: Send signal (ping), read result, store value.

�9 Compare both values and react accordingly.

If you have two ultrasonic sensors, you can get into developing some sophisticated prox-

imity detection with your robot.You could use them to better decide which side of your

robot an obstacle is on, or use the values to produce a "radar" type of map on the N X T dis-

play to do some environment mapping.

The Servo Motor Encoder (Rotation Sensor)
The legacy R C X rotation sensor was always known for its lack of reliability with readings

when turning at both low and high speeds. Robot makers had to play with code to provide

stability to readings returned from this sensor.

80 Chapter 4 �9 Reading Sensors

LEGO decided to integrate an encoder (rotation sensor) directly within its new N X T

servo motors (Figure 4.10). There are two benefits to this: The encoder functionality was
improved, and the N X T received three rotation sensors built right into the motors that don't

require additional sensor ports! The interactive servo motor (as it's also referred to) allows

you to measure both speed and distance in a variety of formats, including degrees, rotations,

and seconds. It acts as both a motor and a rotation sensor, and has a dedicated block for each

of these in NXT-G. In RobotC, you would simply set the parameters for driving the motor
as you normally would while using other commands to read the encoder values to measure

rotation.

Figure 4 .10 The NXT Servo Motor with Built-in Encoder

Figure 4.11 shows an internal view of the servo motor with the encoder (in blue)
located to the left of the larger orange drum (the motor). In reality, the encoder is actually a

black wheel that contains 12 holes which allow the optical sensor to read 24 on /o f f states
with each full rotation. This provides the N X T with a great deal of resolution to detect
position down to the nearest degree. From the image, you can also see how the N X T motor
is internally geared.There is enough torque to drive wheels/tracks directly. Even though the
RIS motors are also internally geared, they have limited torque that usually required an

additional geartrain~especially in sumo competitions!

Reading Sensors �9 Chapter 4 81

Figure 4.11 The NXT Servo M o t o r ~ l n t e r n a l s

Having an encoder built directly into the servo motor allows robot designers to develop

more sophisticated drive mechanisms that enable your robot to do things such as drive

straight, even over rough terrain. This functionality works out of the box with NXT-G.
When you program your robot, the move block pairs two motors together, enabling the N X T

to monitor the encoders of both motors while correcting them on the fly to ensure that the

robot is tracking straight. The general idea is that the program monitors rotations on both

motors. If one falls behind, it adjusts the speed of one motor to compensate for the lag,

which keeps the robot driving straight.
You can try this yourself by creating the TriBot from within Robo Center (sample

robots in NXT-G). Following the programming guide, you will use a move block to allow for
both drive motors to be synchronized. Once built, run the robot and follow along beside it.
Press your finger to one of the wheels and then let go. Note how at first you slow down
one side of the robot, but then it speeds that side up to bring the robot back to driving in a

straight line.
As mentioned earlier, you can use a single servo motor to both move an elevator as well

as determine which floor it is on. With the new level of accuracy in these motors, you can
determine the position of the elevator by performing some simple tests to find which angle
values represent each floor. To do this, create the elevator unit and manually rotate the motor
while viewing the encoder rotation values in NXT-G (or the P,.obotC poll brick window).
Jot down the rotation angle for each floor. Then, simply identify in your program these

angles as stop points for the elevator unit.
The encoder functionality is very powerful for the future of N X T robots, as it opens the

door by enabling your robots to be "location-aware" by performing tasks such as room map-

ping. The sky is the limit here.

82 Chapter 4 �9 Reading Sensors

The NXT supports three types of sensors: passive, active, and digital. The
main difference is that passive sensors do not require a current generator to
supply power to the sensor, whereas active sensors do. Digital sensors use 12C
communication and typically have a microcontroller to handle sampling of
the environment.

Passive sensors include the touch sensor (NXT and RCX), light and sound
sensors (NXT), and the RCX temperature sensor. Active sensors include the
RCX light and rotation sensors. Digital sensors include the NXT ultrasonic

Reading Sensors �9 Chapter 4 83

sensor and numerous third-party sensors such as color, compass, pressure,
gyro, and acceleration sensors.

Figure 4.12 The NXT Servo Motor Encoder

Sensor Tips and Tricks
Sooner or later, you will probably find yourself w i thou t the proper sensor for a particular

project. For instance, you need three touch sensors, but you have only one. Is there anything

you can do? There's no way to turn any sensor into a light sensor or a temperature sensor,

but touch and rotation sensors are at some level replaceable.

Even wi th the addition of an extra sensor port on the NXT, there are still times when

builders need additional ports. There are aftermarket solutions, such as sensor multiplexers,

but these can be expensive, especially if you want to do this for only one robot or to test an

idea. In the following sections, you'l l find some c o m m o n and well-tested tips that can help.

84 Chapter 4 ~ Reading Sensors

Emulating a Rotation Sensor
There's a long list of possible alternatives to the rotation sensor. All the suggested methods

are based upon counting single impulses generated by a rotating part. They all work well, but

usually they don't detect the direction of rotation. In many cases, this is not a problem,

because when coupled with a motor you know which direction your sensor is moving. O f

course, with the addition of three rotation sensors with the NXT, the need for something

such as this is more limited now than it was for the RCX. However, it is still important to

show ideas on how, with some simple parts, you can emulate other sensors.

The assembly pictured in Figure 4.13 shows an axle with a T E C H N I C knob wheel that

closes a touch sensor. Each complete rotation would account for four "ticks" on the sensor.

If geared properly, this could provide a decent resolution for determining the state of a com-

ponent of a robot. For example, you could use it to determine which floor an elevator is at

by counting the number of ticks per floor. This is the principle: Use either a cam or any

other suitable part that, while rotating, periodically pushes the sensor.

Figure 4.13 Emulating a Rotation Sensor wi th a Touch Sensor

Reading Sensors �9 Chapter 4 85

Making a rotat ion sensor out of a light sensor is not very different: Build some kind of

rotating disk wi th sectors of different colors, and count the transitions from one color to the

other (Figure 4.14). T h e general tip applies to this case too: Try to insulate the sensor from

external light sources as much as possible.

Figure 4.14 Emulating a Rotation Sensor with a Light Sensor

O t h e r L E G O electric devices, though not actual sensors, can be successfully employed to

emulate a rotation sensor. These are typically available from sources such as Br ickLink and

are not hard to find.

O n e such device is the polarity device. C o n n e c t it as shown in Figure 4.15, and con-

figure it as a touch sensor. W i t h every turn, it closes the circuit twice. N o t e that you would

need an N X T converter cable, as this uses the older R C X connect ion.

www.syngress.com

86 Chapter 4 �9 Reading Sensors

Figure 4.1 5 Emulating a Rotation Sensor with a Polarity Switch

Connecting Multiple
Sensors to the Same Port--Multiplexing
After the RIS came out, some people found that they needed more than the three sensor

ports provided on the R C X . Expansion of sensor ports on the R C X was limited to touch

sensor multiplexers such as the one developed by Techno-Stuff (Figure 4.16).

Figure 4.16 Techno-Stuff Switch Multiplexer

The principle behind its construction is based on wiring the sensors in a series and with

each connection having a resistor wired between each sensor connector and the port labeled

"RCX." All that would be needed is an R C X - t o - N X T converter cable to enable your robot

to work with it. For each connector, the resistor would vary in rating. In the case of the

Techno-Stuff multiplexer, the resistors are 62K, 30K, and 15K. The R C X sensor port would

be set to read raw data (light sensor) and the values returned would vary depending on

which sensor or sensor combination was clicked. This was quite powerful, as you could sense

eight combination sensor states for three sensors on one port.

If you were lucky enough to own a LEGO CyberMaster 8482 set, you had three touch

sensors that already had variable resistance built in. All you needed was a unique cable con-

figuration (Figure 4.17) that would allow the N X T to see each sensor separately. Reading

these sensors as raw (light sensor) would allow you to read varying resistance values

depending on which sensor combination was pressed.

In Figure 4.17, you can see a number of R C X cables connected to each other, as well as

running off to each sensor. The purpose of this is to have the wiring such that the sensors

are connected in parallel to each other. This wiring allows the N X T to detect all the combi-

nations sensors being pressed by the electrical resistance being returned to the N X T port. If

you want to know more about how this works, look on the Internet for Ohm's Law.

www.syngress.com

Reading Sensors �9 Chapter 4 87

F igure 4.17 RCX Touch Sensor Multiplexer

A bit has changed with the NXT. If you have legacy sensors and multiplexers, you could

probably connect them to your NXT, but you will need a converter cable to go from the

N X T to the 1KCX connector. However, a number of new sensor multiplexers are on the

horizon. Both HiTechnic and Mindsensors are in the running and have products in the

works.
With the advent of the I~C interface, the line between motor and sensor multiplexing

has been blurred a bit. Both HiTechnic and Mindsensors have something in the works here.

Because this chapter is focused on sensors, we won't go into detail on the motor multi-

plexers. Generally speaking, they are similar to what will be described here, with the differ-

ence being that they are used to drive multiple motors off one motor port on the NXT.

HiTechnic has a sensor multiplexer (Figure 4.18) that connects to a single N X T sensor

port, allowing four additional sensors to be connected. This allows seven sensors to be con-

nected at once. Imagine what you can do with four of these! The FC interface is the foun-

dation for all of this and enables the device to handle any combination of any sensor type,

including light, ultrasonic, compass, color, pressure, and other I:~C sensors. It also supports

legacy sensors using the converter cable.

88 Chapter 4 �9 Reading Sensors

Figure 4.18 HiTechnic Sensor Multiplexer

Fans of the original M I N D S T O R M S line will be the first to tell you that the inclusion

of a fourth sensor port on the N X T is a welcome addition. Some believe that four is still

not enough, but with the introduction of the rotation sensors in the servo motors and sensor

multiplexers, fans have far more options now to build complex robots with single N X T

units. O f course, one could always buy another N X T and use Bluetooth communications to

enable them to think together. But that is a discussion for another chapter.

Although this chapter is focused on sensors, you may be interested in having a look at

the Mindsensors motor multiplexer in Chapter 3. It acts in a similar way to the aforemen-

tioned sensor multiplexer, but it allows you to control four additional motors from one

N X T sensor port and it uses the I2C interface.

Other Sensors
In the months after the release of the M I N D S T O R M S RIS, a whole new market for add-

on sensors opened up. The introduction of the N X T in 2006 has propelled this market to

new highs. Currently a handful of aftermarket companies, such as HiTechnic, Mindsensors,

and Techno-Stuff, are actively marketing sensors for the N X T (and P,.CX).

The N X T is backward-compatible with most legacy R C X sensors, which provides users

with a wide array of choices for additional sensors. Currently a number of sensors are avail-

Reading Sensors �9 Chapter 4 89

able for both the N X T and the 1KCX, ranging from pressure, tilt, gyro, color, passive

infrared, motor /sensor multiplexers, compass, IlK communication, acceleration, and sound

sensors (to name a few). There has even been discussion about GPS integration! There is not

enough room to cover all these sensors in this chapter, or it would become a book itselfl

However, we will look at some of these to give you a taste of what is out there. If you don't

see something here, a quick search of the Internet for LEGO sensors or N X T sensors will

give you a night's full of reading.

The Passive Infrared Sensor
The passive infrared (PI1Z) sensor (Figure 4.19) by Techno-Stuff was originally intended for

use with the 1KCX. However, you can also use it with the N X T using a converter cable. The

PI1Z sensor detects passive infrared radiation (heat sources). R e m e m b e r the movie Predator?
R e m e m b e r how the alien "saw" the soldiers it was hunting? The PI1Z sensor "sees" heat

much in the same way.You can use this sensor to build a robot that can seek out heat

sources not evident to the human eye.

Figure 4 .19 PIR Sensor

You can configure the P I R sensor as a light sensor in either N X T - G or Robo tC .

Readings will indicate detection of an object in front of it. The sensor technology has a 20-

foot range and a 180-degree swath. The infrared technology used in this sensor is different

from TV remote controls, so they will not interfere with it.

If you have this sensor, you can try setting up a small program that plays a sound when

you wave objects in front of it. First try moving something cool to the touch, such as an

unfilled glass or c u p - - y o u should not get any results, as it is not giving off much (if any)

infrared radiation. N o w try moving your hand in front of the s e n s o r ~ y o u should hear a

www.syngress.com

90 Chapter 4 �9 Reading Sensors

sound.Your results may vary depending on the level of infrared being given off by your

hand. Dur ing tests, the sensor was quite effective at detecting people walking in front of it

from a few feet away, but it did nothing when it was right in front of a wall or door (as

expected).
Can you think of an idea for using this sensor on your robot? H o w about making a

robot that can follow your pet around? Or how about a robot that can find a small light

source (such as a light bulb) in a maze? Note that you should not use a candle or open

flame for such a test, as that is a fire hazard. Stick to things that are safe!

The Pressure Sensor
Pneumatics plays an important role in many robot builders' designs and creations. For more

detail on this, look at Chapter 11, as it discusses the use of pneumatics with the NXT.

Integrating pneumatics into N X T robots can be both exciting and challenging at the same

time, as you are combining motor, gear, and drive systems with pneumatic cylinders to per-

form varying tasks.

In some cases, you may find the need to use pneumatics for things such as hand claws or

providing motion. In other cases, it is necessary to maintain a state of constant pressure and

to monitor it so that compressed air is available when needed. The same principle is used in

air compressors that you can buy at your local hardware store. A compressor usually has a

motor, sensor, piston, and tank to store compressed air. W h e n started, the compressor turns

on and begins filling the tank, until at some point, the sensor detects that there is enough air

pressure in the tank, which tells the motor to stop pumping. In these compressors, the sen-

sors can be simple mechanical triggers, or electronic sensors.

Figures 4.20 and 4.21 show two pressure sensors developed by Mindsensors and Techno-

Stuff. They are both very similar in operation and specifications. The main difference is how

the product is presented and its mount ing approach. Mindsensors tends to go with the raw

PCB approach, but also provides standard T E C H N I C pin holes for mount ing to your robot.

Techno-Stuff provides the sensor electronics stuffed into a traditional LEGO brick, and you

can mount the sensor the same as you would any LEGO 2 x 4 brick.

Uses for this sensor vary in different designs. One such idea would be to connect it

inline to a pneumatic circuit via a T-junction air tube.Your robot design would likely

include a pump, storage tank(s), and pneumatic piston(s), with the sensor being linked to the

system to moni tor the air pressure. While the robot is operational, some of the air is lost

through switches and junctions (which are not perfectly sealed). This sensor can be used to

moni tor the pressure and trigger a motor pump to switch on to refill the storage tanks.

Programming it as a light sensor would allow the N X T to moni tor the pressure and

trigger the compressor motor on or off based on a preset threshold, thus ensuring that

enough air is in storage and ready for the robot to perform its tasks.

Reading Sensors �9 Chapter 4 91

Figure 4.20 Mindsensors Air Pressure Sensor

Figure 4.21 Techno-Stuff Air Pressure Sensor

T h i n k of some other ways you can use a pressure sensor. H o w about using it inline on a

robotic claw? Here's the idea:

1. Build a claw hand to grab objects and use the sensor to measure pressure feedback

as the claw grabs the object.

2. Use a mo to r to open/c lose the claw and to m o u n t a pneumat ic piston inline on

one s i d e ~ a sort o f " sp r ing- loaded" finger.

92 Chapter 4 , Reading Sensors

3. Mount the pressure sensor inline with the pneumatic piston so that movement in
the piston directly causes a change in the readings of the pressure sensor.

4. As the claw closes on the object, the pneumatic piston will compress as the grip
gets tighter.

5. Use the values returned to provide feedback. For example, you could have the
N X T play sound tones depending on how hard it is gripping. Or you could code

the grabbing motor to close the claw only so much, depending on the amount of
desired pressure.

The Acceleration Sensor
Measurement of the change in velocity of an object is called acceleration. When an object
goes from a standstill to moving, its velocity changes and it begins to accelerate. When that

object slows, its velocity is reduced and therefore it is decelerating. Acceleration sensors are

useful for measuring changes in movement of a robot, detecting when it is tilting (for bal-
ance), determining whether it is climbing a hill, or going down, and so on.

Numerous acceleration sensors are on the market for use with the N X T system. Techno-
Stuff offers a two-axis sensor that you can use for both the 1KCX and the NXT. HiTechnic

offers a three-axis sensor that allows acceleration measurement in the x-, y-, and z-axes.

Mindsensors is also in the game here, offering a variety of two- and three-axis sensors with
varying sensitivities ranging to + / - 5 G. Figure 4.22 shows a variety of these sensors.

There are varying types of accelerometers, including piezo electric, surface microma-

chined capacitive (MEMS), thermal, and electromechanical (to name a few). The technology

behind an accelerometer is quite simple. In the case of MEMS, for each axis a tiny polysil-
icon structure is suspended above a silicon wafer via a polysilicon spring. Together, they form
a differential capacitor with the wafer below. Gravity keeps the suspended structure hovering
at a specific location; when the sensor is moved, the acceleration causes the suspended struc-
ture to move relative to the fixed structure below it, which causes a change in capacitance.
This change is measured and converted to values that are used by the software.

Specific programming approaches for these sensors depend on which version you have.

Each supplier offers samples for you to work with in both NXT-G and RobotC. HiTechnic

has an NXT-G acceleration sensor block that allows you to read x-, y-, and z-axis values.

Mindsensors provides R o b o t C sample code using the I2C bus.

www.syngress.com

Reading Sensors �9 Chapter 4 93

Figure 4 .22 Acceleration/Tilt Sensor

When using these sensors on your robots, there are some considerations you have to be

aware of to ensure reliable readings. Some robot designs cause the robot to ~jolt" when

moving (especially when starting and stopping), which you will have to account for when

programming your sensor. This ~jolting" effect may be enough to cause the sensor to return

erroneous readings that, if not programmed correctly, could trigger a reaction when you

don't desire one. To address this, you can write your sensor reading functions in such a way

as to smooth out the values.
For example, let's say you are building a sumo robot that can detect when it is about to

be flipped over and you are using the acceleration sensor to detect tilt and initiate a reaction.

If you simply take each reading (say, every 200 ms) and use that value to react, you may find

your robot reacting unnecessarily due to its own driving actions. Instead, you can write a

routine that will take (for example) 20 readings, every 10 ms to 20 ms apart, and then

average the values to return a more reliable result. This way, for the brief moment that the

sensor received a few erroneous readings, they will be averaged with the 18 correct readings

which will allow your robot to interpret and ignore this. When your robot does get hit by

its competitor, most (if not all) of the readings will be suggesting a hit and then it can react

appropriately.
It is also important to consider mounting locations. If you want to have a highly sensi-

tive response, mount the sensor on a long antenna-like contraption. Each small movement at

the base will be translated into a larger movement at the sensor. If you desire a less sensitive

response, mount the sensor close to your robot's center of gravity (the base), away from

motors and other mechanisms that will cause vibration.

So, what can you build with an acceleration sensor? How about a weigh scale? Or a

robot that has self-leveling, separately tracked wheel drive units where the base keeps itself

94 Chapter 4 �9 Reading Sensors

parallel to the ground? Because the sensor uses gravity to measure tilt, you can do things

such as detect when your robot is going uphill, or know when it is accelerating too fast back
down.You can even build a robot that shifts its center of gravity forward as it climbs to give
it more holding power and better balance.

The Compass Sensor
As technology advances, robots are becoming more advanced than they have ever been
before. Providing the capability for a robot to become "location-aware" takes us one step

closer to robots that will be able to know where they are and navigate their environment

based on an internal "map" database of its surroundings.

There has been some discussion about integrating GPS receivers into N X T robots, but
although they are accurate, they are not (currently) accurate enough to provide the resolu-

tion to navigate, say, a room with chairs and tables. This also does not take into consideration

GPS signal quality issues indoors. One would have to spend tens of thousands of dollars to

get a GPS device that could return something even close to the requirements here.
One solution for providing location awareness is dead rechonin 2. This process begins with

a known position, or "fix."Then the robot will proceed to navigate by recording its move-

ment. The problem is you can only really record time, distance, and speed. Although the

N X T servo motors allow for precise tracking of the robot's direction, they can't tell you

when the robot has actually slipped on a slick floor or loose terrain. This is where the
heading comes in. A compass sensor will provide a means to do this (see Figure 4.23).

Figure 4.23 Mindsensors Compass Sensor

Reading Sensors �9 Chapter 4 95

A compass sensor is not affected by the interaction between the robot wheels and the
ground. It uses the Earth's magnetic field to determine the position (heading) of the sensor.

These values are converted into measurements in one-degree resolution for use by the

NXT.
Adding a compass sensor into the mix while performing dead reckoning allows you to

track heading along with other parameters. Together, these values would provide you the

means to record your robot's actions and allow for them to be played back. Conceivably, you

could build a robot that records time, distance readings, speed, and heading values to a file,

and then reads the file to have it navigate back along the track it just took. There is a chal-

lenge that will keep you busy for a night.

The NXT-to-RCX Communication Bridge
Mindsensors has developed an NXT-to-IKCX bidirectional communication adapter (Figure
4.24) to allow users with R C X programmable bricks to control them using the NXT.You

can also use the adapter to control some LEGO IlK-based sets such as the 7897 Passenger

Train set. Although this device is not actually a sensor itself, it connects to a sensor port and

provides a means to link the N X T to other devices that use infrared for communications

and control.

Figure 4.24 NrLink: NXT-to-RCX Communication Bridge Sensor

96 Chapter 4 �9 Reading Sensors

The NrLink adapter uses the I2C interface and protocols for communication on the

NXT. The device has a number of configuration parameters, such as user-selectable
short/long-range IR signal communication with the R C X , and because it is developed using
I2C, it can also coexist with other LEGO or third-party digital sensors on the same port.

Using supplied sample code, you can easily connect to an R C X within range, and issue
commands to run programs, motors, start/stop tasks, and so on. So, if you have an older

R C X brick and want to expand the functionality of your N X T kit, this device may provide

you with that extra needed expansion. Have a look at Chapter 3, as it shows a sample using

this sensor to communicate to the LEGO Power Function IR interface, which will allow

you to expand motor control via an unwired connection. This is quite useful when creating

robots where you can't afford to have cables tangle up.

The Color Sensor
The HiTechnic Color Sensor (Figure 4.25) is one of the more welcome additions to the line

of aftermarket sensors for the NXT. For both the R C X and the NXT, robot builders were

pretty much limited to receiving variations of black-and-white values using the provided

light sensor. This sensor changes all that by allowing your robot to see a variety of colors.

Figure 4.25 Color Sensor

The color sensor uses three different colored LEDs to illuminate the surface of objects.

It reads the intensity of each color reflected back, and the variation of this intensity for each

color enables it to determine the color of the object. The sensor uses the I2C interface to

communicate with the N X T and returns the color number (0-17). It also returns the raw

and normalized red, blue, and green values so that you can customize the response based on

exact readings (custom code is required for this).

Reading Sensors �9 Chapter 4 97

With these options, you may think the sensor offers limitless possibilities. Although it
does offer enough possibilities for most uses, it is important to note that this sensor is
affected by ambient light similar to the way the stock light sensor is. More important, in
order to get an accurate reading, you should place the sensor directly above (or in front of)
the object it is reading, and it must be close to the object (approximately 1 cm). One reason

for this is that reading the object at close range reduces the chances of ambient light

entering the equation; in addition, this requires less power.

What can you do with a color sensor? How about building a brick sorter? Surely every

LEGO robot builder wishes he could have a robot help him sort his LEGO bricks. This

sensor will help you on your way to achieving that goal. Figure 4.26 shows Brick Sorter

(www.plastibots.com). It demonstrates how you can use the sensor to read the color of a

LEGO brick and provide a color to allow the N X T to sort it into the correct container.

With some additional tweaking, it would be fairly easy to enhance this robot to also sort

gears, pins, and so on.

Figure 4 .26 Brick Sorter

This sensor offers many more possibilities than just allowing you to sort LEGO bricks.

Can you think of an idea for how to use this sensor? How about using it for line following

in a multicolored line-follower competition? You haven't heard of such a competition? Why

not try to create one yourself?. Just get some colored tape and lay it down on the floor. To

make it more challenging, have some colored tape crisscross and see whether your robot can

determine the correct path to travel. Then, once you figure it out, try to see how fast you

can make your robot do the circuit.

www.syngress.com

98 Chapter 4 �9 Reading Sensors

Summary
In this chapter, we've introduced you to a number of sensors, including the standard N X T

sensors (touch, sound, light, ultrasonic, and servo motor encoder) as well as a number of sen-

sors provided by third-party suppliers. Their basic behavior is easy to understand, but here

you've discovered that if you want to get the very most out of them, you must understand

their requirements and limitations. The touch sensor, for example, seems to be a simple

device, but with some clever work on your part, it can become an important tool for

counting clicks, or it can make a good bumper.

You were also introduced to the implementation of the I:C communications interface to

the NXT. This feature has opened the doors for endless sensor/motor control possibilities

with the N X T and external devices. People have been interfacing all sorts of sensors and

controllers to the NXT, and more are yet to come. There has even been discussion of con-

necting the N X T to GPS receivers or similar devices to make N X T robots location-aware.

Another notable addition to the N X T system is the sound sensor, which allows your

robot to interact with the environment by "listening." There is also the addition of the ultra-

sonic sensor, which has opened the door to building robots that are able to react before they

hit an object. The integration of a rotation sensor to each of the three N X T servo motors

provides your robot with precise motor control for things such as driving and positioning.

More important, the N X T effectively has the capability to run with seven sensors out of the

box (four sensor ports and three servo motor encoders).

Sensors are an important part of robot design and functionality. Remember to think

outside the box with each challenge you are faced with. If you require multiple touch sen-

sors for a robot, but you have only one, think of another way you can meet the requirement.

As discussed in this chapter, you can use a light sensor to act as a touch sensor.

Numerous aftermarket sensors are available for the NXT, and more are coming. If, for

example, you are looking to expand motors or sensors on your NXT, you don't have to buy

another NXT. Instead, have a look at the various multiplexers available out there. Stay tuned,

as there are more cool sensors to come that we could not talk about here due to nondisclo-
sure restrictions.

www.syngress.com

Chapter 5

What's New
with the NXT?

Solutions in this chapter:

�9 Notable Enhancements

�9 The NXT File System

�9 The LCD Screen

�9 Digital Interfaces and Bluetooth

�9 Future Possibilit ies

99

100 Chapter 5 �9 What's New with the NXT?

Introduction
Several changes are introduced in the N X T compared with its predecessor, the RCX. This
chapter covers the major new technologies in detail, explains how they work, and provides
examples of how people have used them in their robots. Specifically, it covers the new LCD,
file system, Bluetooth, and digital interfaces. (We intentionally omitted several improvements,
because we cover them elsewhere in the book.)The chapter concludes with a discussion of
some novel ways in which you can use the N X T thanks to all of these new technologies.

Notable Enhancements
In this section we'll discuss some enhancements to the M I N D S T O R M S NXT, including
studless construction, ethical connectors, rechargeable battery packs, and flash memory.

Studless Construction
If you are accustomed to LEGO T E C H N I C construction, you will get the hang of N X T
robot construction, as the N X T set is almost entirely studless. However, if you primarily did
studded construction before, this is a paradigm shift in robot design, and it takes a while to
get used to. The M I N D S T O R M S N X T kit introduces a few new pieces that were specially
designed for this kit. For example, as of this writing, the T E C H N I C Beam 3 x 3 Bent with
Pins (often referred to as a Hassenpin after Steve Hassenplug) is available only with the set. As
a matter of fact, this part, which is useful for 90-degree connections, was spurred on by

members of the original group of adult fans (M I N D S T O R M S User Panel) who were part
of the N X T project when it was just getting started. Early on, Hassenplug and a few others
recognized the need for such a piece to aid in the construction process that was mostly all
studless building. This piece is one of the most popular pieces in this set today.

Electrical Connectors
The electrical system of the M I N D S T O R M S N X T kit introduces a new connector for the
sensor and motor cables. The connector is similar to an RJ12 phone jack, but if you look
carefully, you will notice that the latch is not in the center. It is offset to the left edge, pre-

venting use of regular phone cables, whether accidental or intentional.You can still connect
the new electrical system with the old motors and sensors using a legacy compatibility cable.

Rechargeable Battery Pack
Though the rechargeable battery pack doesn't come with the retail set, it is a thoughtful
addition as an N X T accessory. The battery pack has a socket on the side to attach the
charger, which can conveniently recharge the batteries without you having to remove the

pack from the NXT. Compared to the original battery cover, the depth of the battery pack

w w w . s y n g r e s s . c o m

What's New with the NXT? �9 Chapter 5 101

is slightly greater, and when connected to the NXT, it protrudes at the bottom. This is

something worth noting and you need to account for it in your robot design. One nice

addition on the software side in terms of the N X T - G and R o b o t C is that it is possible for

you to detect whether the robot is using a rechargeable battery pack, as well as evaluate the

battery's power level (see Figure 5.1).

Figure 5.1 Rechargeable Battery Pack

Flash Memory
Another convenience that is wor th mentioning is the flash memory. The flash memory of

the N X T brick retains firmware and all your files, even when you remove the batteries for

an extended period. This is a significant change from the days of the 1KCX, when you would

have to reflash the unit after you replaced the batteries. The N X T flash can store up to

256KB of data. This is a lot more space compared to the 1KCX. However, as we will discuss

later in this chapter, you can create several new types of files, and those files can occupy
space quickly.

Multiple Types of Sensors
The N X T system supports two types of sensors: new sensors that use the Inter-Integrated

Circuit (I2C) interface, and older analog sensors such as those that came with the 1KCX kit.

There is no specific rotation sensor, as it is now built into the N X T servo motors. The

Ultrasonic sensor is a new addition to the sensor family. This sensor communicates with the

N X T brick using the new digital interface. The redesigned light sensor is also a major

improvement over its predecessor. Chapter 4 provides additional details on these and other

third-party sensors.

The NXT File System
The N X T has introduced a file system that stores up to 64 files. The firmware allows users to

create and delete files, rename them, and modify their contents. Filenames have a three-char-

www.syngress.com

102 Chapter 5 �9 What's New with the NXT?

acter extension, separated from the filename by a period. The name itself can be up to 15 char-
acters long. The extensions start with r, and by this convention, the executable files on the

N X T have an extension of .rxe. Table 5.1 lists the recognized file types with their extensions.

Table 5.1 NXT File Types

File Type Extension(s)

Data files .rdt
Executable files and .rxe, .rtm
Try Me programs
Icon files .ric
Hidden menu files .rms
Program files .rpg
Sound files .rso
Hidden system files .sys
Temporary hidden files .tmp

The N X T brick user interface shows these files in the form of a menu structure starting
with "My Files," and then branching into "Software files," " N X T files," "Sound files," and so
on (see Figure 5.2). Each menu then shows the files stored in N X T memory.The screen
sample in Figure 5.2 is from NeXTScreen, a utility developed by John Hansen (see
Appendix A for details).

Figure 5.2 NXT File Menu Navigation

File-Handling Functions
The NXT-G and the RobotC software offer functions to work with files. The NXT-G soft-

ware provides a block to manipulate files on the NXT. This block supports read, write, close,

www.syngress.com

What's New with the NXT? �9 Chapter 5 103

and delete operations on files. For the read and write operations, it supports reading and

writ ing of the data type as "text" or "number."

The R o b o t C software has several advanced functions for file handling and manipulation.

The read/wri te functions support data types such as byte, short, float, long, and string.

R o b o t C also supports functions to search files that may be on the NXT.

Using File Space Efficiently
The file space on the N X T is limited, and it's wise to use that space efficiently, as you never

know when you will need to add that extra logic in your program.

You can delete a few files that come installed on the NXT, if you want to reclaim some

space in lieu of functionality. For example, you can delete the Try Me programs, sound files,

and so on. If you need that functionality at a later date, you can always download those files

onto the NXT.

The key to efficient use of the file system is to write small programs.You can do so by

reusing code wherever possible. The first time you use a block or function in your program,

all the code required for that function needs to be linked into your program, and that

increases the program's size. Any subsequent use of the same block or function does not

increase the program's size much; rather, there is only a minuscule increase to account for the

subsequent calls to that function. Lately, LEGO has been publishing mini versions of some

popular blocks that are optimized to make smaller programs (for details, see Appendix A).

The LCD Screen
The N X T brick has an LCD screen that is much larger than its predecessor. The screen is a

monochrome matrix of 100-by-64 pixels. W h e n you are interacting with the NXT, the user
interface on this LCD is your window to the NXT's internals.

The firmware provides text as well as pixel-level support for drawing on this screen.You

can also specify the name of an icon file that is residing on the N X T to draw as a picture.

R o b o t C has several functions for displaying text on the screen. Using these functions, you

can choose a large or small font and display text at any position on the screen. R o b o t C also

has several functions for drawing lines, rectangles, circles, ellipses, and images on this screen.

Figure 5.3 shows an example of text sizes and lines.

lO4 Chapter 5 �9 What's New with the NXT?

Figure 5.3 The LCD

Here is the Robo tC program that was used to create the screen image shown in Figure

5.3:

task main()

{
// Display small font text lines

nxtDisplayTextLine(l, "Building Robots") ;

nxtDisplayTextLine(2, "with LEGO") ;

nxtDisplayTextLine(3, "Mindstorms NXT") ;

// Display large font text

nxtDisplayBigStringAt(l, 20, "SYNGRESS") ;

// Draw the lines

nxtDrawLine(10, 28, 90, 28) ;

nxtDrawLine(5, 25, 95, 25) ;

// wait for a minute before ending the program

wait10Msec(6000) ;

Games
One interesting feature the N X T offers for drawing images is its icon file format. The icon

files have an .ric extension on the N X T file system. The file generally contains instructions

which define the image. Unlike a bitmap image, this file can contain instructions with

parameters for drawing lines, circles, rectangles, and so forth. Of course, the bitmap instruc-

tion is also available.
The format for these files is well defined, and the images the N X T software comes

with use the same format.You can also create your own files and upload them on the

NXT. Moreover, in theory, you could create such files from within your N X T program,

and use them. That opens up numerous possibilities for game designers! There is, however,

What's New with the NXT? �9 Chapter 5 105

limited support for testing these files outside of the NXT. The N X T - G software can render
only the bitmap instruction from this file format. The other instructions must be tested on

the N X T itself.
Ross Crawford wrote a Tic-Tac-Toe game to run on the N X T screen (see Figure 5.4).

The program uses the buttons on the N X T for choosing location and placing circles, and it

uses the N X T features of drawing lines, circles, and text to draw the game board and mes-

sages (for details, see Appendix A).

Figure 5.4 Tic-Tac-Toe on the NXT

The N X T display functions are also useful for making charts and graphs on the screen.

With the N X T file system, as you will see in the next section, data gathering and logging

are easy.You can write programs to read these files and, using the display functions, render

this data as charts or graphs.

Digital Interfaces and Bluetooth
To communicate with sensors, motors, and other peripheral devices physically attached to

the NXT, the new system introduces I2C and USB interfaces, whereas for wireless commu-

nication, the N X T has a Bluetooth interface. The USB interface is used to communicate

with a Windows PC or a Macintosh, and I2C is used to communicate with sensors and

motors.

The N X T software comes with required USB drivers, making the N X T a Plug and Play

device. The USB system consists of a host device connecting multiple peripheral devices,

with peripherals being able to connect to only one host. The USB interface on the N X T is

a peripheral USB port, and thus it can connect to any computer with a USB host port. At

the same time, you can't attach another USB peripheral device, such as a memory stick, to

the N X T and expect it to work.

106 Chapter 5 �9 What's New with the NXT?

The I2C interface, also known as IIC, is not a popular household name, but it is used in a

wide array of gadgets and devices (and even in some household items). For instance, it is

commonly used in electronics devices where space efficiency is key, such as mobile phones

and PDAs. For the most part, you won' t have to work with the I2C interface directly, unless

you are developing specialized hardware. In any case, this is a very versatile interface in the

NXT, and it holds promise for a wide variety of next-generat ion attachments and extensions

to the N X T system. Already a few third-party sensors are available that use the I2C interface,

and more are being developed at a rapid pace. For more information on this, refer to

Chapter 4, which covers the I2C interface in greater detail.

Bluetooth Communication
In addition to the wired interfaces ment ioned previously, the N X T supports a wireless

Bluetooth interface. This is a major improvement over the former infrared interface, which

the R C X had, in terms of speed, power consumption, and standardization. The N X T can

selectively turn this interface on and off through programming functions or on-screen

menus, thus further controlling power consumption.

Bluetooth on the N X T can operate in either master or slave mode. While connecting to

a PC, it is always in slave mode; however, you can configure it to operate in master mode

while connecting to other slave NXTs.You can connect up to four NXTs to each other,

with one being the master and the others being slaves.

Each N X T has a unique Bluetooth name, and this name is displayed on the top line of

the screen. While referring to each other by this unique name, you can make a convoy of
N X T robots that can work as a team!

A Surveillance Robot Using NXT and Bluetooth
The standardized Bluetooth interface also lets the N X T communicate with other

Bluetooth-enabled devices. What does this mean? Well, as an example, sending commands to

the N X T from a mobile phone is a breeze.You can attach a mobile phone to your N X T

robot, send the robot on a surveillance mission, take photos or video, and have the mobile
phone transmit the data to a computer!

For instance, Martyn Boogaarts developed a robot (see Appendix A) that has a camera

attached for taking pictures (see Figure 5.5). The robot's head swings around slowly in incre-

ments of 5 degrees. Using an ultrasonic sensor, it looks for any objects in its vicinity, and as

soon as it spots an object, it sends Bluetooth commands to the camera to take a picture.

Then it continues on its mission.

w w w . s y n g r e s s . c o m

What's New with the NXT? ~ Chapter 5 107

Figure 5.5 Coco5 by Martyn Boogaarts

A B luetooth-Based Remote Controller
Using the Bluetooth interface, the N X T motor, and a Mindsensors acceleration sensor,

Philippe "Philo" Hurbain created a remote controller (see Figure 5.6) that transmits spatial

information to an N X T robot (see Appendix A). Using the acceleration sensor, the remote

controller transmits forward or backward tilt and left or right tilt information to the robot.

In addition to this information, you can use your thumb to press the touch sensor on the

left side to transmit on/of f commands. There is a double-bevel gear on the motor that you

also can turn with your thumb. Using this gear, the remote controller can transmit informa-

tion such as rich motor encoder values, which the robot can use for navigating.

r

www.syngress.com

108 Chapter 5 �9 What's New with the NXT?

Figure 5.6 NXTiiMote Remote Controller

Spatial Motion Controllers
The Wii remote controller by Nintendo, popularly known as the Wiimote, is another

amusing device that you can integrate with the N X T (see Figure 5.7). In fact, a few folks
have tried to integrate the Wiimote with the N X T directly, with little success. The Wiimote
uses the Bluetooth HID profile technology, whereas the N X T supports serial port profile
technology. Unfortunately, these two don't work together, unless you are good at hacking

the Wiimote and you know what you are doing. However, it is possible to use a pro-
grammable mediation Bluetooth device which communicates on both profiles. A mobile
phone running a special-purpose N X T Mobile Java application is a perfect example (see
Appendix A for more information on N X T Mobile applications). The application would
interpret Wiimote commands on the HID profile, and transmit them as serial commands to
the NXT. Jose Bolafios created a robot (see Appendix A) for which he used a computer run-
ning a Bluetooth program as a mediation device.

Figure 5.7 Wiimote Integration

www.syngress.com

What's New with the NXT? �9 Chapter 5 109

12C for Spatial Motion Controllers
Spatial motion interpretation on the N X T is not an unattainable ambition, though. Paul

Tingey created a controller to steer and control the R.obotArm-56 (see Appendix A). He

used the Mindsensors compass and acceleration sensors for the motion sensing, and wired

them to the N X T with a smart algorithm (see Figure 5.8).

Figure 5.8 Wii-l ike Controller

Future Possibilities
If you could peer into a crystal ball to see future scenarios for using the NXT, what would

you see? In this section we'll describe some of them.

An NXT Robot Controlled from a Web Server
Imagine a robot to be sent on a mission to explore uncharted terri tory~say, a dark closet.
You are the mission controller and you have all the computing power to design the control
station.You want to see where the robot is going, and control and steer him in the right
direction. At the same time, you want to let the robot have sufficient autonomy to do things
on its own, such as negotiating its path to advance farther. And you may not be anywhere
near the robot.

You can do this in several ways, and one of them is to create a Web-based application,

which you can access from anywhere and anyplace, using any browser. The application

would communicate with the N X T robot using Bluetooth and gather pictures from the

robot, which would then be displayed on your browser. The steering controls that you

design for the Web page would transmit the commands to the N X T in real time as you
operate the controls.

While designing such a robot, you have choices for the Web application architecture,

too. For example, if you were to go with the Internet Information Server (IIS), you would

have plenty of support in .NET. If you chose to go with the Apache server, you would have

adequate scripting support for Bluetooth communications. In fact, NXT-specific Bluetooth

functions are available now for Perl, too.

www.syngress.com

110 Chapter 5 ~ What's New with the NXT?

NXT Puppet Show
Now imagine a stage designed for puppet shows; one similar in size to a LEGO theme~say,

a meadow. In that meadow, a boy, made out of an N X T , is guarding his sheep, again made out of

an N X T . The boy plays his flute for a while and falls asleep ... a feat which is now possible

thanks to the sound capability on the N X T . The sheep is grazing around happily. From the edge

of the table, the show performer places an N X T wolf in the meadow, and turns it on. As

soon as the wolf comes to life, the sheep is scared and starts to scurry around. The wolf

pounces at the sheep and knocks her down. The sheep is screaming, and all that sound wakes
up the boy. The boy looks around, and finds the wolf and chases him away.

Okay, back to the drawing board. What do you need to make this kind of puppet show?

The Bluetooth identifiers of NXTs can clearly differentiate the boy from the sheep or the

wolf. As soon as the N X T is turned on, the Bluetooth identifier of the wolf can broadcast

itself and the programs in the sheep can choose to respond to scurry around, whereas the

programs in the boy ignore it. One hurdle in a story like this is locating other puppet, if the

puppets are not predictably placed on the stage, or if they have moved around to a random

location. To see things in the area, therefore, a third-party camera for the N X T would be
great! As you can see, the possibilities for stories are limitless.

GPS and the NXT
Wouldn't it be nice to let your robot wander around the neighborhood and let it know

where it is? A distinct possibility: a robot that could deliver flowers at the other end of town,

if it only knew the coordinates of the house! A GPS would come in handy here. A
Bluetooth-enabled one.

Several Bluetooth GPS modules are available today. These modules are designed to con-
nect to mobile devices, such as PDAs or laptops, and they provide location information. The

actual mapping is done in the software running on the PDA or laptop.You can use the same

concept in the N X T robot. There are a few hurdles, however. First, the GPS unit needs to

be facing a clear sky, so your robot arena needs to be outdoors. Second, the GPS resolution,
at best, is half a meter. Therefore, a small robot would be left on its own to position itself
within that zone.

www.syngress.com

What's New with the NXT? �9 Chapter 5 111

Summary
In this chapter, we covered several new introductions in the M I N D S T O R M S N X T system
as compared with its predecessor, the R C X . Most of these introductions represent the latest
technologies made available for your robot to play with.

For instance, the LCD screen provides a better user interface for the NXT, and allows

users to create interactive games and other screen applications. The N X T file system is

simple and provides several functions for manipulating files and their contents. And FC and

Bluetooth have opened up possibilities for integrating your robot with several other stan-
dardized gadgets and sensors.

As you can see, plenty of creative possibilities are within your reach.You just need to put
your mind and your N X T to work!

www.syngress.com

This Page Intentionally Left Blank

Chapter 6

Solutions in this chapter:

• Studless Building Techniques

• Maximizing Modularity

• Loading the Structure

= Putting It All Together: Chassis, Modularity, and Load

Hybrid Robots: Using Studless and Studded LEGO
Pieces

114 Chapter 6 �9 Building Strategies

Introduction
Having discussed motors, sensors, geometry, and gearing, we'll now put all these elements
together and start building something more complex. LEGO robotics should involve your
own creativity.You won't find any rules or style guides in this chapter, simply because there
aren't any. What you will find are some tips meant to make your life easier if you want to
design robust and modular robots.

Studless Building Techniques
Building with studless LEGO pieces is different from traditional studded building. Simply

stacking pieces together to make strong robots and structures is not an option with studless

building. As you build with studless pieces, you may notice that studless structures tend to be

more flexible than similar studded structures. Don' t confuse flexible with weak. Properly built

studless structures can be just as strong as those built with studded pieces. The two building
systems are different, and they require different building techniques.

The main structural component of any robot built with studless pieces will be the stud-
less beam. Let's start with two white studless beams oriented as shown in Figure 6.1. There
are many ways to connect these two beams, and all of them have advantages and disadvan-
tages. Figure 6.2 shows four components that you can use to connect the two beams.

Figure 6.1 Two Parallel Beams

www.syngress.com

Building Strategies �9 Chapter 6 115

Figure 6.2 Methods to Connect Parallel Beams

Option A is a simple beam that you can pin to each parallel beam. A single beam won't

be very useful, but as a pair, they will connect the two beams and keep them parallel to one

another. This type of connection is called a paral lel l inkage. In it, the two white beams will

always be parallel to each other, as will the two gray beams. This will work well in some sit-

uations, but most of the time you'll want a more rigid assembly.

Remember to use the black and blue pegs (or pins) when connecting beams.
They fit in the holes with much more friction than the gray or tan ones,
because they are meant for building rigid components and structures. The
gray and tan pegs, on the other hand, were designed for building movable
connections, such as levers and arms.

You can use option B to make a more rigid assembly. Replace one of the gray beams

with the L-shaped piece. Be sure to use three pins to connect it to the white beams.You'll

discover that the assembly is both strong and fairly rigid.

You can use option C on its own, to connect the two white beams. It will keep them

parallel to one another and not allow them to move. However, this option is less rigid than a

combination of options A and B. Use option C to connect the two white beams. N o w

www.syngress.com

116 Chapter 6 �9 Building Strategies

gently press the t w o white beams together with your thumb and forefinger. It doesn't take

much force to make them move a little bit. This connection might work in some cases, but

if you start putting some weight (such as our NXT) on this, it might bend or come apart.

Option D is another method.You can use it much like you used the two beams in

option A. This method has one major drawback. It will not work under tension. In other

words, you can pull it apart easily. Option D will work only in compression when the two

white beams are being forced together.

Now let's change the orientation of the two white beams and try to connect them in a

different way. Figure 6.3 shows several ways to connect beams in this new orientation. The

first two options, A and B, use pieces designed specifically for this purpose. These two con-

nectors will keep the two white beams together and parallel to each other in all directions.

Both work very well in many situations. However, both fail when placed under tension. In

other words, when the two white beams are pulled apart, the pieces easily separate.

Options C and D are also good ways to connect the two beams. However, as con-

structed, both of them fail in compression, when the two white beams are pressed together.

You can construct options C and D so that they will not fail in compression by placing the

two white beams outside of the two black connectors.

www.syngress.com

Building Strategies �9 Chapter 6 117

Figure 6.3 Connecting Parallel Beams

So, what can you do to keep the assembly together in both tension and compression?

Starting with option C or D, you can simply add two more connectors, as shown in Figure
6.4.This prevents failure in both tension and compression.This type of connection also has

another major advantage. Unlike options C and D, where the two white beams can still

move in one direction or another when connected, these two beams are fixed in position
and cannot pivot, rotate, or slide. This results in a strong and rigid assembly that will not
easily fall apart.

Figure 6.4 Assembly to Resist Tension and Compression

www.syngress.com

118 Chapter 6 �9 Building Strategies

Despite our insistence on the importance of connecting beams for a strong and rigid
assembly, there's no need to go beyond the minimum required. Eliminating unnecessary parts
can result in a smaller, more compact, and lighter weight assembly. Weight is, actually, a very
important factor to keep under control, especially when dealing with mobile robots. The
greater the weight, the lower the performance, due to the inertia caused by the mass and
because of the resulting friction the main wheel axles must endure.

Maximizing Modularity
While building your robot, you will likely have to dismantle and rebuild it, or parts of it, at
least, many times. This isn't like following someone's detailed instructions; it's more of a trial-
and-error process. Unless you're a very experienced builder and are blessed with clear ideas,
your design will develop in both your mind and your hands at the same time.

For this reason, it's best to make your model as easy to take apart as possible, or, to term
it more appropriately, your robot should be modular in construct. Building in a modular
fashion also gives you the opportunity to reuse components in other projects, without
having to rebuild common subsystems that already work. This is not always possible, because
when you want something really compact, you have to trade some modularity in favor of
tighter integration. Nevertheless, it's a good general building practice, especially when con-
structing very large robots.

Building with the N X T motors and sensors requires a little more planning than building
with legacy LEGO motors and sensors. Their unique shape and unique location of
mounting points make them difficult to simply attach anywhere with little planning. For this

w w w . s v n a r e s s . c o m

Building Strategies ~ Chapter 6 119

reason, you'll probably want to plan where they will be in the finished design and build
them into the structure of your robot from the very beginning. Doing so will probably
make your finished design more compact as well as stronger. Unfortunately, it will probably
be nearly impossible to easily remove your motors without destroying a large part of the

surrounding structure.
So, how can you maximize modularity while at the same time tightly integrate the

NXT, motors, and sensors into a robot? By creating subassemblies that, when combined,
make up the complete robot. A subassembly would have the motors, sensors, and/or NXT
tightly integrated within it. Assembling the multiple subassemblies should be easy. This way,
you can remove, rebuild or improve, and reinstall a single subassembly without altering the
other subassemblies. The bucket robot in Figure 6.5 illustrates these ideas.You can break

down this robot into three subassemblies.

Figure 6.5 Bucket Robot

Remove the two pins on each side that connect the top motor to the turntable (see the
arrows in Figure 6.5) and the wire connecting the motor to the NXT. This separates the
bucket subassembly from the rest of the robot. The NXT is a subassembly of its own.You
can remove it by simply pulling up on it. Figure 6.6 shows the three separate subassemblies.
You can modify or change each one entirely without affecting the others as long as the
mounting points where they connect to each other do not change.

120 Chapter 6 �9 Building Strategies

F igure 6.6 Bucket Robot Subassemblies

One good reason to make your NXT easily detachable is that you must be
able to change batteries when necessary. The most common solution is to
keep the NXT at the very top of your robot~ th is way, you can also easily
access the push buttons and read the display. It is also a good idea to have
easy access to the sensor and motor ports, as well as the USB port on the NXT
while it is installed in your robot. That way, you can attach motor and sensor
cables as well as the USB cable, all w i thout having to remove the NXT from
your robot.

Modular building has another advantage. At some point, you may build a very large

L E G O robotic creation and wish to share it with friends at school, a local club meeting, or a

L E G O event. If it is modular, you could take it apart into its individual subassemblies and

reassemble it at your destination. Transporting multiple subassemblies is usually easier than

transporting one very large structure.

Building Strategies ~ Chapter 6 121

Loading the Structure
Even the most minimal configuration of a mobile robot has to carry a load of about 450 g
(16 oz)" the weight of one N X T (with batteries) and two motors. Adding cables, sensors, and

other structural parts can easily push you up to 600 g (21 oz) or beyond. Should you worry

about this mass? Is its position relevant?
The first factor you need to consider is friction.You should take all possible precautions

to minimize it. This is especially true where the structure attaches to the wheels because it is
there that you transfer all the weight to the wheels by way of the axles. The wheel acts as a
lever: The greater the distance from its support, the greater the resulting force on the axle.

Such forces tend to bend axles, twist beams, and produce plenty of friction between the axle

and the beam itself. For this reason, it's important that you keep your wheel as close as pos-

sible to its supporting beam. Figure 6.7 shows three examples: "a" being the worst case and

"c" the best.

Figure 6.7 Keep a Wheel As Close As Possible to Its Supporting Beam

It is also a good idea to support the load-bearing axles with more than a single beam
whenever possible. The three examples shown in Figure 6.8 are better than those in Figure
6.7, with 6.8c being the best among all the solutions shown so far. The use of two sup-

p o r t s ~ o n e on either side of the wheel, as on a bicycle~avoids any lever effect created by

the axle on the support, thus reducing the friction to a minimum.

122 Chapter 6 �9 Building Strategies

Figure 6.8 Two Supporting Beams Are Better Than One

Having your gearing as close as possible to your supporting beams is just as important
(see Figure 6.9). Positioning your gears next to supports will help to reduce or eliminate any
gear slippage. If you do not place your gears near supports, the axles they are attached to

may bend a little, which might allow the gears to slip when they are placed under load.

Figure 6.9 Place Gears Close to Supporting Beams

It is also important to place supports in the same orientation as the gears. If your gears
are oriented vertically, your main support should be in the vertical direction. When placed

under load, the majority of the force being placed on the gears and axles will tend to push

them away from one another, so your support needs to be oriented to resist that force.

Likewise, if your gears are in a horizontal orientation, your supports should be horizontal as
well. Figure 6.10 illustrates this idea. In Figure 6.10, the main supports for the gears are
placed vertically, while the gears are lined up horizontally with each other. When placed

Building Strategies �9 Chapter 6 123

under load, the gears are going to try to push away from one another, primarily in the hori-
zontal direction. Because there is little support in the structure to resist this, there is a good
possibility that the gears will slip. Simply placing a short beam between the two gears con-
necting the two axles together will reduce the possibility of gear slip.

Figure 6.10 Gears In-Line with Supporting Beams

Ideally, the supports would be exactly in-line with the ames so that the ames would run
through the holes in the beam being used for support. However, that is not always possible.
In these cases, placing the supports as close as possible to the gears is advisable. Figure 6.11
shows three possible options, with "a" being the worst and "c" the best.

Figure 6.11 Gears Placed Near Supports

124 Chapter 6 �9 Building Strategies

The position of the NXT has a strong influence on the behavior of mobile robots. It's
actually the shape and weight of the whole robot that determines how it reacts to motion,
but the NXT (with batteries) is by far the heaviest element and thus the most relevant to
balancing load. Recalling the concept of inertia will explain why balancing load is important.
As explained earlier in this chapter, any mass will tend to resist a change in mot ion~ in
some cases, to resist acceleration. The greater the mass, the greater the force needed to achieve

a given variation in speed.

Putting It All Together:
Chassis, Modularity, and Load
The following example summarizes all the concepts discussed so far in this chapter.You can
build the chassis shown in Figure 6.12 using only parts from the NXT kit. Its apparent sim-
plicity actually conceals some trickiness. Let's explore this together.

Figure 6.12 A Complete Platform

The motors are integrated into the chassis for this robot. They provide the power for
movement and act as structural components. The upper beams are attached to the motors
and lower beams using two L-shaped beams for improved rigidity. In front, the two sides of
the robot are connected using two horizontal beams. The upper is designed to hold up
under compression, and the lower resists tension forces. Two separate supports also help to
increase the rigidity of the entire structure. Figure 6.13 shows the bottom view of the robot.

Building Strategies �9 Chapter 6 125

Figure 6.13 Bottom View

Wheels are placed as close as possible to the supports to reduce any lever effects that

could introduce more friction into the system. The axles are also supported on both sides of

the motors. The motor hubs tend to bend and move a little bit, so the axles are supported

on both sides of the motor to further reduce any lever effects.
This platform is also very modular. Even though the motors are tightly integrated into

the chassis, this platform comes apart easily so that each individual subassembly can be
worked on and modified. The caster wheel assembly simply pulls off the back of the plat-

form, as shown in Figure 6.14.
Once you have removed the rear caster assembly, remove the two axles and bushings

from the 7-length beam on the front, and then remove the beam. With a gentle pull, the left

and right drive assemblies will separate from each other.You now have the three separate

subassemblies that make up the robot platform (see Figure 6.15). Even the wheels can be

easily removed for use elsewhere.

126 Chapter 6 �9 Building Strategies

Figure 6.14 Removing the Rear Caster Assembly

Figure 6.15 Separating the Left and Right Drive Assemblies

Building Strategies �9 Chapter 6 127

The truth is that if you own only the N X T kit, you probably won't have enough parts
to build another robot unless you dismantle at least most, if not all, of your existing robot. If

you have more LEGO T E C H N I C parts, however, you might be able to leave your platform

or a select subassembly intact and reuse other parts in a new project.
This robot is a good platform to use to experiment with load and inertia. Write a very

short program that moves and turns the robot.You don't need anything more complex than

the following pseudocode example, which will drive your robot briefly forward and back-

ward, and make it turn in place:

start left & right motors reverse

wait 2 seconds

stop left & right motors

wait 2 seconds

start left & right motors forward

wait 2 seconds

start left & right motors reverse

wait 2 seconds

stop left & right motors

wait 2 seconds

start left motor forward

start right motor reverse

wait 2 seconds

stop left & right motors

Place your N X T in different locations and test what happens. When it is slightly forward

of the main wheel axles (see Figure 6.16), the caster wheel tends to lift off the ground when
quickly switching from forward to reverse. This creates an unstable condition that could

result in the robot failing to work properly.
As you move the N X T rearward toward the caster wheel, the robot becomes more

stable (see Figure 6.17). However, too much weight on the rear caster wheel is not the best

position either. The more weight placed on a caster wheel, the poorer it will perform. Too

much weight and it may not work at all.

128 Chapter 6 �9 Building Strategies

Figure 6.16 Poor Positioning of the Load (NXT) Makes This Robot Unstable

Figure 6.17 Too Much Weight on the Rear Caster

Building Strategies �9 Chapter 6 129

Proper positioning of the load would be somewhere in between. For this platform, ideal
placement of the N X T would be just above or a little behind the front drive wheels (see
Figure 6.18). The drive wheels, not the caster, will carry most of the robot's weight. The
NXT is also not so far forward that the whole robot becomes unstable.

Figure 6.18 Proper Positioning of Load

Hybrid Robots: Using
Studless and Studded LEGO Pieces
Some of you may have a substantial collection of LEGO pieces besides those that came with
your NXT kit. Many of them may be studded LEGO T E C H N I C pieces. Because the NXT
kit comprises almost exclusively studless pieces, what should you do with all your studded
LEGO T E C H N I C bricks? Should you throw them away? Absolutely not! Like all LEGO
pieces, studded and studless T E C H N I C pieces are specially designed to fit well together, and
using both in robotic creations can allow for some very interesting innovations. Sometimes
creations using both studded bricks and studless beams are called hybr id creations, because
they are a mixture of studded pieces and building techniques and studless pieces and
building techniques.

130 Chapter 6 ~ Building Strategies

We already discussed connecting legacy motors and sensors to the N X T with converter

cables. Figure 6.19 shows some ways that you can attach legacy motors and sensors to stud-

less beams so that you can include them in your robotic creations.

Figure 6.19 Legacy Sensors and Motors on Studless Beams

As discussed earlier in this chapter, pure studless assemblies often have more flexibility

than similar studded assemblies. Oftentimes this is okay, even desirable, but sometimes it isn't.

Figure 6.20 shows a differential assembly using a special studded T E C H N I C brick to house

the differential gearing. Studless beams attached to the sides of the T E C H N I C brick show

how you can integrate studded and studless pieces in this assembly. As discussed in Chapter

2, the spacing between gears is very important, especially when using a crown gear. A struc-

ture using studless pieces to house the differential and gear assembly could have been built,

but it would probably have used more pieces and been more flexible than the single

T E C H N I C brick. This is an example where using both studded and studless LEGO ele-
ments have resulted in a better assembly.

Another reason to combine studded and studless elements may be to attach studded
LEGO plates to your creation to hide mechanisms and give it a clean outer appearance.
Simply pinning studded LEGO T E C H N I C bricks to your studless beams and attaching

plates to those bricks can accomplish this.You may even want to add your R C X to your

N X T robot. Adding studded T E C H N I C bricks to your studless chassis will give you studded

mounting points for your RCX.You can use the same method to attach a stationary studless

creation to a LEGO base plate.

www.syngress.com

Building Strategies �9 Chapter 6 131

Figure 6.20 Hybrid LEGO Differential Assembly

Summary
Recalling the key ideas we've presented in this chapter will serve you well in building
LEGO robots with your NXT.

Using the studless building techniques~such as how to connect and brace parallel
beams~wil l help to make your robot chassis strong and reliable. Remember that the proper
placement and attachment of beams will do more to create a strong chassis than simply
adding more parts. Keep in mind that a solid yet lightweight structure is the goal.

Modularity will allow you to reuse some components in other projects. It will also allow
you to move entire subassemblies from one robot to another.You can also modify or rebuild
individual subassemblies without having to change the entire robot. Modular building will
also help if you need to take your robot apart for transport or storage.

Balance is the key to stable vehicles. Keep the overall mass of your mobile robots as low

as possible to reduce inertia and its poor effects on stability. Experiment with different place-

ments of the load, mainly in regard to the NXT, to optimize your robot's response to both
acceleration and deceleration and to improve stability.

www.syngress.com

132 Chapter 6 �9 Building Strategies

Keep in mind that the ideas presented in this chapter are suggestions only. They are

intended only to aid you in developing your own successful building style. Sometimes you

may be able to use all of them in a single robot, and other times you may be able to apply

only a few of them. These ideas aren't rules. It may be possible to violate one or more of

them at a time and still create a successful robot. Use them as a guide, but feel free to

abandon the main road whenever your imagination tells you to do so.

~:I i ! !~! ~ '",'~,~i~! '~':'~'~i~'!!!!i!i!i

Chapter 7

Solut ions in th is chapter :

• What Is the NXT Programmable Brick?

• Introduction to Programming the NXT Brick

• Using RobotC

= Using Other Programming Languages

• Code Samples

• Running Independent Tasks

134 Chapter 7 * Programming the NXT

Introduction
This book is not about programming. There are already many good resources about pro-
gramming languages and techniques, and about programming the NXT in particular.
However, the nature of robotics (often called mechatronics) is such that it combines the disci-
plines of mechanics, electronics, and software, meaning you cannot discuss a robot's
mechanics without getting into the software that controls the electronics that drives the
machine. Similarly, you cannot write the program without having a general blueprint of the
robot itself in your mind. This applies to the robots of this book as well. Even though we are
going to talk mainly about building techniques, some projects have such a strong relationship
between hardware and software that explaining the first while ignoring the latter will result
in a relatively poor description. For these reasons, we cannot simply skip the topic. We need
to lay the foundation that will allow you to understand the few code examples contained in

the book.
In the previous chapters, we mentioned the NXT many times; this chapter assumes that

you are familiar with the documentation included in the MINDSTORMS kit and that you
know what the NXT is. The time has come to have a closer look at its features and discover
how to get the most from it. We will describe its architecture and then give you a taste of
the broad range of languages and programming environments available, from which you can
choose your favorite. Our focus will be on two of them in particular: NXT-G Code, the
graphics programming system supplied with the kit; and RobotC, the text-based C pro-
gramming language available from LEGO Education.

The last sections of the chapter provide two complete code examples, both of which are
meant to help explain how to write well-organized code that is easy to understand and
maintain, and are designed to familiarize you with the programming structures you'll find
later in the book.

What Is the NXT Programmable Brick?
The NXT is a powerful computer.You may think of a computer as being merely a PC with
a keyboard, mouse, and monitor; devices created to allow human users to interface with the
computer, none of which are available on the NXT. However, many commonplace items.
Apple's iPod, cell phones, portable game consoles from Nintendo and Sony, VCRs~have
"embedded" computers that provide their functionality. The NXT is more similar to these

embedded computer devices.
Instead of the keyboard, mouse, and monitor found on a PC, the NXT has a small liquid

crystal display (LCD) and four push buttons. The NXT's LCD is 100 pixels (i.e., dots) wide
by 64 pixels high--large enough to display eight lines of text with 16 characters per line.
The LCD can also be used to display icons or graphics~in other words, black-and-white

Programming the NXT �9 Chapter 7 135

pictures.You could even write a program to plot a graph on the display showing how the

value of one of its sensors changes over time.

The N X T has four input ports. These are used to connect the four types of sensors

(touch, ultrasonic distance, sound, and light) developed by LEGO for the NXT. Many addi-

tional NXT-compatible sensors have subsequently been developed by third-party companies

(see Appendix A), including accelerometers, compasses, higher-performance light sensors and

distance sensors, pressure detection, and so forth.
There are three output ports on the NXT. Variable-speed motors are connected to these

ports. The motors have an integrated position detection capability or "encoder" that is used

to keep track of how far the motor has traveled. One complete revolution of a motor will

change the motor encoder value by 360 counts. The position detection is similar in function

to the odometer on a car that measures how far the car has traveled.

The N X T has both a wired USB port and a wireless communications link.You can use

either of these links to connect your N X T to a PC. The wireless link uses the industry-stan-

dard Bluetooth protocol and the N X T can connect to other compatible Bluetooth devices.

For example, some cell phones come with a Bluetooth link and by loading a special software

program in your phone you can then use your phone as a remote control for the NXT.You

also can use the Bluetooth link to connect one N X T ~ t h e "mas t e r "~wi th up to three

other N X T s ~ t h e "slaves"~for some interesting mul t i -NXT applications.

The N X T has 256 K B ~ i n other words, 256,000 b y t e s ~ o f flash memory, and 64 KB of

random access memory (RAM). Flash memory retains its value even when the N X T is

powered off; this is the same type of memory used to store songs in an iPod or to store tele-

phone directories in a cell phone. The contents of R A M memory are lost when the N X T is

powered off; R A M is used to store transient values created while a program is running. The

flash memory is used to implement a small file system of up to 64 files that can be stored on
the NXT. One type of file that you want to store on the N X T is the program file you've

written. Another type of useful file is a sound file that can be played over the NXT's

speaker.
The N X T is just like a PC in that it has an "executive" control program or operating

system that provides overall control over the other programs on the NXT. Operating systems

for PCs include Windows and Linux. The NXT's operating system was written specially for

the N X T and does not have a name. About half of the 256 KB of flash memory is used to

store the NXT's operating system and the other half is used for the file system.

A total of 256 KB of flash memory may not seem like a lot when you compare it to the

disk drive on your PC, which can have 100,000 times this capacity. But the programs

written for the N X T are far smaller than the programs on a PC. Typically there's room on

the N X T to store around 20 or more user programs.

136 Chapter 7 �9 Programming the NXT

MINDSTORMS" A Family of Programmable Bricks
The N X T is the second generation of LEGO's M I N D S T O R M S product line.

The first generation was introduced in the mid-1990s and centered on the R C X pro-

grammable brick. There were several derivatives of the R C X , with slightly different features.

They all shared the same Hitachi H8 8-bit computer and had a similar programming lan-

guage. The Cybermaster brick had two built-in motors and used a wireless link instead of an

infrared link. The Scout brick was a lower-functionality subset of the RCX. The N X T is far

more capable than the P,,CX. Some of the improvements include in the following:

�9 The NXT's computer is 10 to 50 times faster than the computer in an RCX. It has

five times as much memory. Internally the computer uses a 32-bit native format

instead of 8 bits.

�9 The N X T has four sensor ports versus three on the I<CX. Many more types of

sensors are available for the N X T than for the RCX.

�9 The N X T motors have integrated odometers/position sensors.The R C X does not.

�9 N X T motors are "smart" with their built-in encoders. On the R C X , you only

were able to "apply a specified percentage of the maximum available power" to a

motor. If the batteries were weak or there was a lot of resistance to m o v e m e n t ~

driving up an incline, more friction/binding in the mechanical construct ion~the

motor would operate at different speeds.

�9 Motors on the N X T can be directed to "move at a specified percentage of the

maximum speed using feedback from the motor odometers to adjust the applied

power up or down to achieve this speed."The N X T motors will have consistent

speed even if the batteries are weak or there is higher friction?

�9 The N X T has both USB and Bluetooth communications links. The P,,CX had a

single infrared communications link that was slower than and not nearly as robust

as the NXT's links.

�9 A large part of the P,,CX's program memory was read-only; once programmed in

the factory during manufacture, it could not be upgraded. All of the N X T software

is stored in flash memory that can be upgraded.

�9 On the R C X , user programs and a significant chunk of firmware were stored in

volatile R A M memory whose contents were lost when batteries were exhausted or

removed. On the NXT, nonvolatile flash memory is used.

Programming the NXT * Chapter 7 137

Introduction to Programming the NXT Brick
The N X T is not useful without a user-written "program" that describes its behavior on how
the ou tpu t s~ in other words, the motors~should react to changes in the inputs (i.e., the
sensor values). Without a program, the N X T is an expensive paperweight! Fortunately, you
don't have to have a college degree in computer science to program the NXT; LEGO has

developed three different environments for programming the N X T and they all make it

quite easy to write a program for the NXT.
You may already be a computer "programmer" and don't realize it. For example, when

you enter numbers into your cell phone directory you are "programming" your cell phone.

When you enter formulas into a spreadsheet, such as "SUM" the values in a column of your

spreadsheet, you use a form of computer programming. When you define formatting styles

in a word processor~for example, indent paragraphs 1 inch with a line of space before and

after the paragraph~you are creating a "program" for your word processor that describes the

"behavior" for text entered into a file.

A common theme in these examples is that they are applications written by computer

experts to make it very easy for the end user to customize or program how the application

behaves and deals with its data/environment.The end user does not have to be an expert.

The N X T is similar to the aforementioned examples. LEGO partnered with industry

experts to develop three different applications that allow you to easily enter data that creates

a program for the NXT. The data that you enter is a "program" for the NXT.You program

the N X T by running one of these three applications on your PC to create the program;

once the program is created, you then use the application to download (or transfer) the pro-
gram to the NXT, where it can be "run" or "executed." When you run the program on the

NXT, the N X T is behaving autonomously~independent of human control~according to
the behavior described in your program.

There are three programming environments for the N X T because they are optimized

for the needs of different types of users. Table 7.1 summarizes the three programming

solutions.

Table 7.1 Programming Environments for the NXT

Programming
Environment Description

NXT-G Developed by National Instruments for LEGO. Ships with
the retail version of the NXT kit.
A graphical programming environment. You drag code
blocks (represented by icons) that describe different behav-
iors~turn motor A on at 50 percent of full power~and
connect them with lines to describe program behavior.

Continued

138 Chapter 7 �9 Programming the NXT

Table 7.1 cont inued Programming Environments for the NXT

Programming
Environment Description

ROBOLAB

RobotC

Works only with the NXT.
Best for writing short, simple, uncomplicated, basic pro-
grams, and for younger (preteen) owners.
Developed by Tufts University for LEGO's Education division.
Available from LEGO's Education division.
Another graphical programming environment. Not quite so
intuitive as the NXT-G programming language, but a bit
more feature-rich.
Originally developed for the RCX. Supports both the NXT
and RCX.
Best for users (e.g., schools) that have a mixed environment
of NXTs and RCXs and want to use a graphical program-
ming solution. If you already have RCXs and are adding
some NXTs, you may want to use ROBOLAB.
Developed by the Robotics Academy at Carnegie Mellon
University for LEGO's Education division. CD version is avail-
able from LEGO's Education division or can be downloaded
directly via the Internet.
A text-based programming language. Uses the popular
industry-standard C programming language.
Supports both the NXT and RCX brick.
Suitable for novice and experienced programmers.

When you purchase an N X T from a retail supplier, it comes with a CD containing the
NXT-G programming environment. An N X T purchased from LEGO's Education division
does not come with programming software; you need to purchase one of the three available
environments.

How Does a Program Run?
The N X T has its own operating system, just like a PC has a Windows or Linux operating

system. The operating system is a powerful "executive" program that manages all of the

devices (sensors, motors, buttons, LCD display, timers, memory, etc.) that are part of the
NXT.

In an embedded system such as the NXT, the operating system is often called j~rmware~
in other words, software for an embedded system stored in nonvolatile flash m e m o r y ~ a n d it
provides control over the hardware of the embedded system.

www.syngress.com

Programming the NXT �9 Chapter 7 139

An operating system also provides other base capabilities that are found on the NXT. On
the NXT, it implements a file system that can store up to 64 files. It provides a menu system
for managing f i les~in other words, execute, run, or delete the files~similar to, but naturally
not as powerful as, the functionality found in the Windows desktop and Explorer menus!

You write your program for the N X T using one of the programming environments.

Then the PC "compiles" the program into a compact format suitable for execution by a

computer and transfers it to the NXT. Once it's on the NXT, you use the buttons to navi-

gate to the operating system's "run program" menu item. Pushing the Enter button (the

orange button) will "run" the program contained in the selected file.

This compact format of a program is often called bytecode. A byte contains a single char-
acter of data. A user program is composed of a series of instructions that describe the desired
or programmed behavior. It takes several bytes of data to describe one ins t ruct ion~hence,
the term bytecode. "Set motor power level" is a typical instruction; the first byte is the opcode

specifying the instruction type, the second byte indicates which of the three motors to
manipulate, and the third byte is the power level to apply.

Bytecode is not instructions that the NXT's CPU can execute directly. Instead, the oper-

ating system contains an "interpreter" application that looks at each bytecode and converts it

to the appropriate functionality. Interpretative programming languages are very common

Java is a popular example, where a user's program is converted into Java bytecode which is

then interpreted when the program is run.

Using NXT-G
NXT-G (NXT Graphical) is the graphical integrated development environment (IDE) pro-

vided with the N X T set. NXT-G is targeted at children and adults with no programming
experience, and for this reason it is very easy to use.

You write a program simply by dragging and connecting code blocks into a sequence of

instructions, more or less like using actual LEGO bricks. Different kinds of code blocks
correspond to different functions:You can control motors, watch sensors, introduce delays,
play sounds, and direct the flow of your code according to the state of sensors, timers, and
so forth. N X T - G also provides a simple way to organize your code into MyBlocks, or

groups of code blocks that you can call from your main program as though they were a

single code block.
When you think your code is ready to be tested, the NXT-G IDE will compile (trans-

late) your code into bytecode and download it to the N X T through the USB or Bluetooth

link as a file on the NXT.
The intuitiveness of N X T code makes it the ideal companion for inexperienced users,

but as you become more expert, you may notice some drawbacks:

�9 The NXT-G graphical programming interface is not suitable for large programs.

Graphical programming is great for small programs, but it becomes hard to follow

140 Chapter 7 �9 Programming the NXT

when the complete program will not fit on a single screen (say, more than 20

blocks).

User-defined variables are a useful and common programming concept. NXT-G

supports variables but they are awkward to use.

NXT-G provides access to the vast majority of the NXT's operating system func-

tionality. But some useful features can't be accessed via NXT-G. For example:

A r r a y s ~ a list of related variables~are a very useful programming construct

that is not available in standard N X T - G programming. (Some advanced N X T

users have enhanced N X T - G with additional blocks that provide primitive array

support, but using arrays remains awkward and difficult.)

You can use N X T - G to display the value of a variable on the N X T LCD as

long as it is a whole number. But other IDEs provide stronger formatting capa-

bilities such as "display a number with two decimal points in the fractional

part," or "center a text line on a screen" instead of always left-aligned. Or you

might want to draw a column of nicely aligned numbers on a screen; other

IDEs would allow you to "display a numerical value padding with blanks as

required to take precisely five characters."
NXT-G supports only "integer" or whole number variables. It doesn't provide

access to "floating-point" or fractional numbers. There are many times when you'll

want to use fractional values; for example, you might want to keep track of the dis-

tance your robot has traveled in inches~the calculation is easy; just multiply the

wheel diameter (say, 2.67 inches) by the encoder count, and divide by 360 because

there are 360 counts per revolution. Or you might want to use the sine function

which ranges from 0.0 to 1.0.

�9 Some other IDEs have much better capabilities for debugging errors in your pro-
gram. All but the simplest programs are extremely likely to have errors.

�9 Trigonometric functions (sine, cosine, arctangent) are useful in calculating a robot's

position.

�9 The interface is very intuitive but can become somewhat tedious as you become

expert and know exactly what you're doing. It tends to take a lot more keystrokes

and mouse clicks to write the same logical code in a graphical environment than it

does using a text-based language.

Sooner or later, you may start to want a more powerful language. Fortunately, alternatives

such as the Robo tC programming environment are still easy to use but provide more power

and flexibility.

Programming the NXT �9 Chapter 7 141

Using RobotC
The NXT-G IDE was optimized for the target market of young children~say, 8 to 14 years
of age. It's a great solution for this market segment. It also is a great fit for any inexperienced
user with no previous computer programming knowledge.

But many users will want more. They may want an IDE that uses a standard program-

ming language. Or they may want a solution that offers more power and flexibility. Robo tC
is a great alternative for this type of user.

�9 The R o b o t C IDE uses the industry-standard C programming language. The C lan-

guage, and its "big brother," C + + , is the most popular and most used programming
language over the past 20 years. Linux and Windows are both predominantly

written in C. When you learn to program in RobotC, you're really learning how
to write programs in C; a useful skill?

�9 The Robo tC IDE has been optimized to make it easy to learn. So far, more than

2,000 students have been taught Robo tC in the classroom; at the end of the first

90-minute class, they were programming and running their first R o b o t C programs
for the NXT?

�9 R o b o t C has a "basic" and an "expert" mode; in the "basic" mode a lot of the
advanced functionality is hidden, and it is ideal for use by novices. Many other C
development environments are targeted at the experienced professional pro-
grammer and the inexperienced user is easily overwhelmed.

�9 RobotC's basic mode is great for the novice user. The expert mode is suitable for

the intermediate and advanced user; this mode currently has the most features and
programming flexibility of any programming environment for the NXT.

�9 R o b o t C has a number of extensions that have been added to simplify and facilitate
control of robotic controllers such as the NXT.

R o b o t C was developed by the Robotics Academy (RA) at Carnegie Mellon University
(CMU). C M U is one of the top three U.S. colleges for robotics research. The RA is part of
the National Robotics Engineering Consortium. The R A is a worldwide leader in devel-

oping robotics education and training material for the precollege student. A wealth of

training material has been developed for RobotC. A lot of this is Web-based and targeted for
individual, self-based instruction and learning (see Appendix A).

Programming in Robo tC is conceptually the same as programming in NXT-G.You

write your program on the PC. When you think it is complete, you used the R o b o t C IDE

to compile the program into bytecode and transfer (download) it to the N X T file system

where it can be run or executed. The difference is that NXT-G is a graphical programming

l anguage~you drag and connect blocks on a d iagram~whereas Robo tC is a text-based
programming l anguage~you write the program as a text file.

www.syngress.com

142 Chapter 7 ~ Programming the NXT

A neat enhancement in Robo tC is the ability to automatically trace, on your PC, the

execution of your program. All the internal values (sensors, motors, user-defined variables)

are automatically polled by the PC for display on its monitor.You can even temporarily sus-
pend your program and walk through the execution of your program logic one line of code

at a time.
Usually only the simplest programs work the first time you try to run them. RobotC

has a very powerful interactive debugger which is really terrific in terms of helping you find

and correct errors in your programming.
Some of the projects discussed in this book actually require that you go beyond the

limits imposed by NXT-G code. This is the main reason we chose Robo tC to illustrate

the few programming examples we've included. Robo tC also has the advantage that, being

a textual language, it allows for a very compact representation that better suits the format

of a book.
Later in this chapter, we'll discuss a few simple programs and how you can program

them in both NXT-G and RobotC.

Using Other Programming Languages
LEGO made a bold move in releasing the source code for the N X T firmware and providing

a detailed software development kit (SDK) for advanced computer programmers to modify

or write their own firmware. The vast majority of N X T users will never need to look at or

use the SDK. However, a small handful of users are using this SDK to create their own

firmware and IDEs for the NXT. Since the release of the SDK in August 2006, several new

programming environments for the N X T have been developed and are in various states of

readiness, as outlined in Table 7.2.

Table 7.2 Programming Environments for the NXT

IDE/Programming
Language Description

NBC/NXC/BricxCC NBC is an assembler for the NXT-G bytecode.
NXC is a high-level text-based language for the NXT that
generates NXT-G bytecode instructions.
BricxCC is an IDE that supports both NBC and NXC.
All three of these platforms are relatively mature and
stable.
John Hansen is the primary developer of the NXT IDE. For
many years, he has been the developer of an earlier ver-
sion for the RCX.

Continued

Programming the NXT �9 Chapter 7 143

Table 7.2 cont inued Programming Environments for the NXT

IDE/Programming
Language Description

pbLUA

LeJOS NXJ

pbLUA is an implementation of the LUA language for the
NXT.
Ralph Hempel is the sole developer of the LUA application.
Ralph is well experienced with the MINDSTORMS products,
having developed a version of the FORTH language
(pbFORTH) for the RCX.
LeJOS NXJ is a subset of the Java language for the NXT. It
is currently in alpha release.
A core team of about four developers are working on
leJOS for the NXT. Most of the team members were
already developers of the leJOS version for the RCX.

All of the programming solutions in Table 7.2 are open source and, unlike the solutions
available from LEGO, are free and noncommercial (see Appendix A for references).

M1 of the alternative and the LEGO-provided solutions are interpretative systems that
execute bytecode created from a compiler. NXC and NBC use the NXT-G bytecode. LUA
and Java have bytecode that is unique to these languages; LUA and Java are standard pro-
gramming languages that run on a variety of platforms. NXC is a language unique to the
NXT.

The LUA and Java implementations are currently in an early stage of development and
are not ready for widespread deployment, although this will change over time.

Using NBC/NXC
The N X T Byte Codes (NBC) and N X C (Not Exactly C (NXC) languages use the same
firmware as NXT-G. The advantage of this approach is that you can program in either the
NXT-G graphical language or in N B C / N X C without having to reload the N X T
firmware. The other solutions utilize different firmware interpreters that do not support
NXT-G programs. (A dual-version firmware solution is currently in development for
1KobotC that also supports NXT-G-based programming; it should be available by the time
this book is published.)

NBC was developed first; it is a very low-level language requiring detailed knowledge of
the individual NXT-G opcodes. It has subsequently been superseded by the higher-level
NXC language which is similar to, but different from, C.

NBC is generally similar to the C programming language but has many differences due
to the limits and capabilities found in the NXT-G bytecode. For example, it does not sup-
port floating-point variables. In addition, it implements arrays, but in a proprietary fashion
that is not common to standard programming languages.

144 Chapter 7 �9 Programming the NXT

N X C and Bricx Command Center (BricxCC) are the most advanced of the alternative
programming environments for the NXT. N X C + BricxCC is quite a powerful combina-
tion. The drawbacks are that the programming language is unique to the N X T ~ i t is not
C ~ a n d it is constrained by the limitations and performance of the NXT-G interpreter. For
example, it doesn't support floating-point variables, and array support is different from that
found in most other programming languages.

BricxCC is quite a powerful IDE. It was originally developed for the R C X and has
been subsequently enhanced to add support for the N X T and N B C / N X C .

Using pbLUA
The pbLUA language (the name stands for programmable brick LUA) is the result o fKalph

Hempel's experience in designing and programming embedded systems. According to
Wikipedia.org, "Lua is a dynamically typed language intended for use as an extension or
scripting language, and is compact enough to fit on a variety of host platforms. It supports
only a small number of atomic data structures such as boolean values, numbers (double-pre-
cision floating point by default), and strings. Typical data structures such as arrays, sets, hash
tables, lists, and records can be represented using Lua's single native data structure, the table,
which is essentially a heterogeneous map."

Using LeJOS NXJ
LeJOS NXJ (the name stands for Lego Java Operating System NXJ) is a subset of the Java
language. It was originally developed for the MINDSTOR.MS K C X and many of the orig-
inal developers have been involved in a similar port to the NXT. LeJOS is an open source
project and is under continuous development. It became available in early 2007 as a limited-
feature alpha release, and it is still incomplete for widespread use.

Significant effort is still required to get the full NXT feature set enabled in leJOS. For
example, a menu system is not available, so after you have downloaded your program, you can
run it only once. If you want to run it a second time you have to download it again.

Using Other
Programming Tools and Environments
We didn't cover all the programming environments for the NXT. There simply isn't room to
cover them in depth. There are two other environments that are worth mentioning, though.

R.OBOLAB is a graphical IDE that was originally developed for the RCX. It's very

popular in the educational market; hundreds of thousands of students use R.OBOLAB every
year. In fact, it is the language of choice for K C X in the education market. KOBOLAB has
been significantly enhanced and extended to support the NXT. It has also been upgraded
for the K C X version.

www.syngress.com

Programming the NXT �9 Chapter 7 145

We do not cover ROBOLAB in this chapter because, if you don't already have R C X
bricks and ROBOLAB, the NXT-G IDE is the best choice for graphical programming. If
you do have R C X bricks, you're already familiar with ROBOLAB and the transition to
ROBOLAB on the N X T is straightforward.

Numerous evolving solutions treat the N X T as a dumb device with all the intelligence
provided by programs running in the PC. The PC communicates with the N X T over the
wireless Bluetooth link. We do not consider these in this book, for two reasons:

In general, you need to have preexisting skills in writing PC-based programs. This
is not the audience for this book.

More fundamentally, the la tency~30 milliseconds for a round-trip message~of the
Bluetooth link is too slow for acceptable real-time performance of a robot. It takes

10 messages to read the NXT's motor encoders (three messages) and sensors (four)
and update the motors (three). The cumulative time of more than 250 milliseconds

is generally not fast enough.

Code Samples
Up to this point, the few programming examples you met were written in a sort of pseu-
docode that was very close to plain natural language. The use of pseudocode allows the pro-
grammer to "play computer" and understand what the program does. But to complete the
projects in the book, some of which are a bit complex, you need a real environment with
which to run and test the code. We chose to write all the examples using Robo tC because
it combines power with compactness, it's easy to install and learn, and it's available directly
from LEGO.

This chapter concludes with two sample programs. One is for a clock, and the other is
for a simple line-following robot. These examples describe some of the most important fea-
tures of RobotC, but we strongly recommend that you read the available online documenta-
tion (see Appendix A). Even if you don't choose RobotC, we're sure you can easily translate
our examples into your favorite programming language.

Code Sample" A Simple Clock
The logic for implementing a clock is very simple:

1. Adjust the starting time using the left and right keys to change the hour and
minute values.

2. Every one second increment the "seconds" counter.

3. Every 60 seconds reset the "seconds" counter to 0 and increment the "minute"
counter.

www.syngress.com

146 Chapter 7 �9 Programming the NXT

4. Every 60 minutes reset the "minute" counter to 0 and increment the "hour"

counter. If the new value is 12 or greater, reset the "hour" counter to 0.

5. When the time has changed, display it on the LCD.

We could write this as a single long sequence of instructions. But it is better to break it

up into several smaller "modular" units. Each unit of code is a subroutine or function. The

highest-level "logic" for our program instructions is show here"

/ /

// Declare variables to hold the time and initialize them to zero

//

int second = O;

int minute = 0 ;

int hour = 0 ;

task main()

{

setTimeBeforeStartingClock () ;

runClock () ;

return;

This program code is short and easy to understand. It shows a few elements of the C
programming language syntax:

Comments begin with the characters " / / " and continue to the end of a line.

Comments contain informative information only and are ignored by the compiler.

Liberal use of comments is highly recommended for ease of understanding your
program.

Each R o b o t C program has at least one task. If you're a Windows programmer, a

task is the same as a thread. A task represents a block of code that should be run.

There may be cases where you want to run three tasks simultaneously and you can

do that by defining more than one task in your program. The N X T interpreter will

then share the computer processing among the multiple tasks. Think of this as

cooking breakfast:You've got the toast in the toaster, you're frying the eggs in one

pan, and you're frying the bacon in another pan- - three tasks running at once?

�9 The int keyword is used to declare a variable. So int second - O; declares an integer

variable named second and gives it an initial value of 0.

�9 There are two calls to user-defined functions (setTimeBeforeStartingClock and

ru,Clock) in the preceding code. A function is a block of code that can be invoked

www.syngress.com

Programming the NXT �9 Chapter 7 147

by simply calling the function name.You use functions to split your program into

smaller chunks of code.

You can also use functions as a convenient way to test your program in partial

steps.You might develop the runClock function first to test the clock operation and
just have an empty "stub" for setTimeBeforeStarting, Clock. This way, you can test the

clock operation function and simply let the time always start at 00:00:00.

The displayTime function that follows nicely formats the time variables into a text string

and then displays it on the NXT's LCD screen. This feature is used in several spots in the

program so it's been defined as a function to make efficient and clean use of code. When

you want to display the time you make a call to this display function, displayTime uses

advanced formatting techniques to convert the internal format of variables into text

s tr ings~for example, the format code %02d will convert a variable into two characters (02)

as an integer number (%d) without the fractional part.

void displayTime()

{

string sTime;

string sSecond;

//

// Build time string in format "hh-mm-ss"

//

StringFormat(sTime, "%2d:%02d", hour, minute);

StringFormat(sSecond, ":%02d", second) ;

sTime = sTime + sSecond- // concatenate the two strings;

//

// Now display it on the LCD

//

nxtDisplayBigStringAt(2, 16, sTime) ;

return;

The runClock function is small and easy to understand. It simply updates the time every

second. The minute and hour variables are updated appropriately as well, as shown here"

void runClock ()

{

while (true)

{
//

// Loop forever incrementing second, minute, hour

//

www.syngress.com

148 Chapter 7 �9 Programming the NXT

}
}

displayTime();

waitlMsec(1000) ; // Waits one second

second = second + I;

if (second >= 60)

{

second = 0;

minute = minute + I;

if (minute >= 60)

{

minute = 0;

hour = hour + I;

if (hour >= 12)

hour = 0;

}

The setTimeBefomStartingClock function is used to set the start time for the clock.You use

the le~ and right buttons to increase or decrease the minute value. Pressing the Enter button
advances the program flow to modify the hour value.

/ /

// Use right / left / enter keys to adjust minute and hour

//

void setTimeBeforeStartingClock()

{

nNxtButtonTask = -2; // Tell NXT OS that your program will use the buttons

// Display some help info on the LCD display

nxtDisplayCenteredTextLine(0, "Left/Right to");// Text line 0 on LCD

nxtDisplayCenteredTextLine(l, "Set Minute"); // Text line 1

nxtDisplayCenteredTextLine(3, "Enter sets hour");// Text line 2

displayTime () ;

while (true) // Repeat a block of code many times

{
//

// Loop until the 'enter' key is pushed.

//

if (nNxtButtonPressed == kLeftButton)

www.syngress.com

Programming the NXT �9 Chapter 7 149

if (minute < 59)

++minute; // "++" will increment the minute variable by 'I'

else

minute = 0;

displayTime();

}
else if (nNxtButtonPressed == kRightButton)

{
if (minute > 0)

--minute; // decrease minute by one

else

minute = 59;

displayTime();

}
waitlMsec(250) ;

if (nNxtButtonPressed == kEnterButton)

break; // exit or "break out" of the loop

}
//

// Wait for the 'enter' key to be released.

//

while(nNxtButtonPressed == kEnterButton)

{}

nxtDisplayCenteredTextLine(0,

nxtDisplayCenteredTextLine(l,

nxtDisplayCenteredTextLine(3,

while (true)

{
if

{

"Left/Right to") ;

"Set Hour") ;

"Enter runs clock");

(nNxtButtonPressed == kLeftButton)

if (hour < Ii)

++hour ;

else

hour = 0 ;

displayTime () ;

150 Chapter 7 ~ Programming the NXT

else if (nNxtButtonPressed == kRightButton)

{
if (hour > 0)

- - hour ;

else

hour = Ii ;

displayTime () ;

}
waitlMsec(250) ;

if (nNxtButtonPressed == kEnterButton)

break ;

}
while(nNxtButtonPressed == kEnterButton)

{}

eraseDisplay() ; // Clear the LCD screen

There's one thing to watch out for if you copy the preceding program. RobotC will

generate an error message if you try to call a function before it is defined. So you have to

rearrange the order of the source code to ensure that functions are defined before they are
called.

The preceding program is included in the sample programs distributed with RobotC.

The filename is N X T Simple Clock.c.You can open this file in RobotC with the Open
Sample Program command.

This relatively simple program is more complex to write in NXT-G. Figure 7.1 shows a

screenshot of partial implementation in NXT-G. This program updates the time for minutes
and hours only (not for seconds) and fills the complete display.

www.syngress.com

Programming the NXT �9 Chapter 7 151

Figure 7.1 Partial Implementation of Preceding Code, in NXT-G

Code Sample" Following a Line
We will use another example to clarify this concept and introduce other tips. Say your robot

has been designed to follow a black line, detect small obstacles with a bumper, and remove
them from its path by pushing the obstacles away with some kind of arm. As we explained
earlier, it's impossible to write a program without having a precise idea of how the robot is

designed and what it is expected to do. For the example we are going to illustrate, we made

the following assumptions about the robot and the environment:

�9 The line is darker than the floor.

�9 The robot will follow the left border of the line (e.g., it turns right to go toward

the line, left to go away from line).

�9 Motor ports A and C control the left and right drive wheels, respectively.

�9 Motor port B operates the arm.

�9 Port $1 is attached to a touch sensor connected to the bumper. It closes (goes from

0 to 1) when the bumper is pressed.

�9 Port $2 is attached to a face-down light sensor that reads the line.

152 Chapter 7 �9 Programming the NXT

Here is the initial code you should write:

int floor ;

int line;

task main()

{
Initialize() ;

Calibrate () ;

Go Straight () ;

while(true) // repeat the follow code block forever

{
Check_Bumper () ;

Follow Line() ;

}

The main level of your program is quite simple, because at this point you're not con-

cerned with what Go_Straight or the other functions mean in terms of actions.You're only
concerned with the logic that connects the different situations.You are deciding the rules

that affect the general behavior of the robot and you don't want to get into the details of

how it can actually go straight. This result is achieved by encapsulating the instructions that

make your robot go straight into afuncti0n, a small unit which "knows" what the robot

requires in order to go straight. This approach has another important advantage:Your code

will be more general because it doesn't depend on the architecture of the robot. For
example, for one specific robot, "go straight" will mean switching motors A and C on in the
forward direction, whereas for another it might mean switching on motor B in the reverse
direction. When you want to adapt the program to a different architecture, you simply
change the implementation details contained in the low-level subroutines, without having to
intervene on the logic flow.

Let's come back to your main task to examine it in deeper detail. The first instruction is

actually placed before the beginning of the task: It declares that you are going to use two

variables, named floor and line and intended to contain integer numbers. A variable is like a

box with a name written on it:You can place something inside; say, a specific n u m b e r ~ t h a t

is, you can assign a value to the variable. Or you can watch what's inside the box, reading the

variable. At this stage, you are neither assigning nor reading the variables; you are simply

declaring that you need two of them. In other words, you are asking Robo tC to prepare

two boxes with the names just mentioned.

When the user starts the program on the NXT, the main task begins. After it has com-

pleted initialization and calibration procedures, the program starts the robot in straight

www.syngress.com
d

Programming the NXT �9 Chapter 7 153

motion, and then enters an endless loop where the program continuously manages its two
tasks: removing obstacles and following the line. The while(true) statement repeats all the
instructions delimited by the open ~/nd close braces forever. In your case, it will execute the
Check_Bumper subroutine, then Follow_line, then Check_Bumper again, in a continuous loop,
that only the user can interrupt using the Exit button.

Everything is clear and simple, as it should be. Now let's have a look at what happens at
a lower level in our subroutines.

Any program will typically include an initialization section, where you set the motor
power, configure the sensors, reset timers and counters, and initialize variables. This is not

required when you use N X T code, because it automatically configures the input ports for

you. RobotC, like the other textual environments, requires that you explicitly declare what

kind of sensor you connect to each port:

void Initialize()

{
SensorType[Sl] = sensorTouch;

SensorType[S2] = sensorLightActive;

The word void is what tells Robo tC that you are describing a subroutine, and it's fol-

lowed by the name you choose for it. The SensorType statements are used to configure input
port $1 for a touch sensor and input port $2 for a light sensor.

The calibration routine is designed to inform your robot of the actual light readings it
should expect on its path. We discussed this topic briefly in Chapter 4, explaining that
keeping your program independent from particular cases is a good general programming

practice. In this example, it means you should not write the light sensor thresholds into the
code, but rather give your robot the possibility to read them from the environment, and this
is what you have declared the floor and line variables for.

void WaitBumperPress()

{
PlaySound (soundBeepBeep) ;

while (SensorValue[Sl] == 0) ;

while (SensorValue[Sl] == i) ;

// wait for bumper press

// wait for bumper release

void Calibrate()

{
WaitBumperPress();

Boor = SensorValue[S2] ;

WaitBumperPress();

line = SensorValue[S2] ;

www.syngress.com

154 Chapter 7 �9 Programming the NXT

WaitBumperPress () ;

}

This code shows that in some situations you can recycle a sensor and use it for more
than a single purpose" During the calibration process, the bumper is used as a trigger to tell
the robot that it's time to read a value. It also shows that subroutines can be nested. In other
words, you can make a subroutine call another subroutine. In this particular case,
H&itBumperPress is a small service subroutine that produces a beep and then waits until the

bumper switch gets pressed and released.
When you run the program, the calibration procedure begins and informs you with a

beep that it waits for the first reading.You place your robot with the light sensor on the
floor, far from the line, and push the bumper. The program reads the light sensor and stores

that value as a typical "floor" value in the floor variable. Then it beeps again while waiting to
read the line.You place the robot with the sensor just over the line and push the bumper
again, making it detect the "line" light value and store it in the line variable. The robot finally
beeps again, meaning the calibration process has finished and that the next push on the
bumper will put it in motion.

This sort of prerun phase is quite useful in many other situations, such as when you

need to prepare the robot for operations by either reading some environment variable or
resetting mechanisms that might have been left in an unknown state by previous executions.

The Check_Bumper procedure is in charge of testing whether the robot has hit an

obstacle, and if so, how it should react:

void Check_Bumper ()

{
if (SensorValue[Sl] == I)

{

}
}

Stop () ;

Remove Obstacle() ;

Go Straight () ;

It checks the bumper, and, if found closed, stops the robot, calls the Remove_Obstacle sub-
routine to clear the path, and then resumes motion. Testing the bumper is as simple as

checking whether $1 has become equal to 1, which means that the touch sensor connected

to port 1 has been pressed.You notice that we apply here the same concepts used at the
main level: encapsulating details into routines at a lower level.

The Follow_Line routine is what keeps your robot close to the line edge~let 's say the

left edge. If the light sensor reads too much of the "floor" value, it turns right toward the

line. If, on the contrary, it reads too much of the "line" value, it turns left, away from the line

(see Chapter 4 for a discussion of this method).

Programming the NXT �9 Chapter 7 155

void Follow Line()

{
const int SENSITIVITY = 5;

if (SensorValue[S2] <: (floor + SENSITIVITY))

Turn_Right () ;

else if (SensorValue[S2] >= (line - SENSITIVITY))

Turn Left() ;
m

else

Go Straight () ;

The method used in this subroutine deserves some explanation. First of all, const int
S E N S I T I V I T Y = 5; tells P,.obotC that the variable S E N S I T I V I T Y is a constant (const)
value that cannot be modified. It is used together with the floor and line variables to decide

what the robot should do. An example with actual numbers can make things clearer.

Suppose the Calibrate routine placed the value 55 in the floor variable and the value 75 in

the line variable. The program tests whether $1 is less than or equal to floor +
SENSITIVITY, which results in 55 + 5 = 60, to decide whether the robot has to turn right

toward the line. Similarly, it tests whether sensor $2 is greater than or equal to f loor- SEN-
SITIVITY, which corresponds to 75 - 5 = 70, and if this is the case, it makes the robot turn

left, away from the line. While the readings remain greater than 60 and lower than 70, the

robot goes straight.You can change the value of S E N S I T I V I T Y to make your robot more or
less reactive to readings: An increase will narrow the range of values that allow the robot to

go straight; thus, your robot will make more corrections in order to remain close to the edge

of the line.
The code you wrote so far is rather general and could work for a broad class of robots.

Now the time has come to write the part of the program that depends on the physical

architecture of your robot.
The Go_Strai2ht routine will be very straightforward in most cases.You know from the

initial assumptions that the robot has two side wheels (or tracks) driven by two independent

motors. In Chapter 9, we will explore this configuration, called differential drive, in greater

detail. For the moment, let's stick to the fact that if both motors go forward, the robot goes

forward and straight. If one of the motors stops, the robot turns toward the side of the sta-

tionary wheel. This knowledge is enough to write the following routines, which control

motion:

void Go Straight()

{
motor[motorA] = 50; // Motor forward at 50% of full power

motor[motorC] = 50; // Motor forward at 50% of full power

156 Chapter 7 �9 Programming the NXT

void Stop()

{
motor [motorA] =

motor [motorC] =

}

0;

0;

// Turn motor off

// Turn motor off

void Turn Left()

{
motor[motorA] = 0;

motor[motorC] = 50;

}

// Turn motor off

// Motor forward at 50% of full power

void Turn Right()

{
motor[motorA] = 50;

motor[motorC] = 0;

}

// Motor forward at 50% of full power

// Turn motor off

There's one last routine left: Remove_Obstacle. Let's say your robot features a very simple

arm that works with a single motor and requires only a timed activation:

void Remove Obstacle()

motor[motorB] = 50;

waitlMsec(2000) ;

motor[motorB] = -50;

waitlMsec (2000) ;

motor [motorB] = 0 ;

// Motor forward at 50% of full power

// Wait 2000 milliseconds or 2 seconds.

// Negative value reverse motor at 50% of full power.

// Turn motor off

The statement wait lMsec(2000) makes the program wait for 2,000 thousands of a

second, or two seconds. This parameter depends on the time your mechanism needs to

remove the obstacle, and it is once again related to the physical structure of the robot.

Your program is now finished and ready to be tested. We hope this example made you

realize the benefits of modular and well-structured code. This program is included with the

P, obotC distribution as the sample program N X T FollowAndAvoid.c.

www.syngress.com

Programming the NXT �9 Chapter 7 157

Running Independent Tasks
All the tools you can choose from to program your N X T support some form of multitasking,

that is, they support two or more independent tasks that run at the same time. This is not
particularly evident when you use N X T code, but it's a well-documented feature in all the
alternative environments.

Multitasking can be helpful in many situations and it's often a tempting approach, but

you should use it with a lot of care because it will not always make your life easier. Let's go

back for a momen t to our previous example: Would multitasking have been a good choice?

Didn't your robot have two different tasks to manage: line following and obstacle detection?

Well, it did, but they were mutually exclusive~after all, your robot was not following the

line while it removed the obstacle. In cases such as this, and in many others, your robot is

asked to perform different activities one at a time more often than it is asked to perform dif-

ferent activities at the same time. Using multitasking, you would have made your code more

www.syngress.com

158 Chapter 7 �9 Programming the NXT

complex, because of the additional instructions needed to synchronize the tasks. When the
Remove_Obstacle task stops the robot, it should communicate the Follow_Line task to suspend
line following, and communicate again when it can be resumed.

In designing a multitasking application, you are required to move from a sequential, step-
by-step flow to an event-driven scheme, which usually requires additional work to keep the
processes coordinated. Whereas sequential programming is like following a recipe to cook

something, you can compare multitasking to preparing two or more recipes at the same time.

This is quite a common practice in any kitchen, but requires some experience to manage the

allocation of resources (stoves, oven, mixer, blender...), respond to the events (something's
ready to be taken out of the oven), and coordinate the operations so that the tasks don't con-

flict with each other.You have to think in terms of priorities: Which dish should you put in

the oven first? Programming independent tasks implies the same concerns:You must handle
the situations where two tasks want to control the same motor or play two different sounds.
The N X T is well equipped to manage resource allocation and to support event-driven pro-
grams, and Robo tC gives you full access to these features. However, most of the effort is still

on your shoulders" No tool makes up for the disadvantages inherent in a bad design.
In our experience with LEGO robotics, there are few actual situations where multi-

tasking is absolutely necessary, or even useful. Our suggestion is that you approach it only

when your robot performs some really independent activities, such as playing background

music while navigating a room, or responding to messages while looking for a light source.

Summary
In this chapter, you took some first steps on your path to programming LEGO robots. We
started describing the NXT, the LEGO programmable unit that's the core of your robots, to
unveil some of its secrets.You discovered how its architecture can be easily understood in
terms of layers: your program, its translation into bytecode, the interpreter in the firmware,

and the processor which executes the operations.
To create your program on a PC, you can choose from many available tools; we briefly

described NXT-G, the LEGO graphics programming environment developed by National
Instruments for LEGO; and RobotC, a C programming language for the N X T available

from LEGO's Education division. We also reviewed a few other environments: ROBOLAB,

N B C / N X C , pbLUA, and N X T leJOS.
The second part of the chapter did for programming what the previous chapter did for

building: It established some guidelines. Oddly enough, the two arenas share a lot, because

layered architecture and modularity principles apply just as much to the body of the robot as

they do to its brain, with the notable difference that sometimes you have good reason not to

follow those principles in the hardware. In other words, there is no excuse for badly orga-

nized software! We used two short but complete programs written in Robo tC to put these

principles into practice, showing how they can improve the readability, reusability, and testa-

bility of your code.

!!!ii!ii~!~iil;~ ~ : ~ ' % ! ! ! ! ~ ! ~ ! i i i i i i ~ : !:!

Chapter 8

Playi ng Sou nds
and Music

Solut ions in this chapter:

m Communicating through Tones

• Playing Music

• Converting Sound and Music Files

160 Chapter 8 �9 Playing Sounds and Music

Introduction
The N X T features an internal speaker and the hardware necessary to drive it, thus making
your robot capable of producing sounds. Those familiar with the sound system on the R C X
robot will be pleasantly surprised with the NXT's superior sound system and wider range of
capabilities. Perhaps most significantly, it is possible to make your N X T speak, thus providing

a very simple and direct way for it to communicate with you. Do not underestimate the

sound features the N X T provides. Aside from the convenience of easily getting information

from your robot, which will help in testing and debugging your programs, sounds and music

are a fun way to give your robots a more defined personality. The N X T also features a sound

sensor, allowing a certain amount of two-way aural communication between you and your
robot.

The topic of playing sounds and music with the N X T is more closely related to pro-
gramming than to building techniques. However, when you are dealing with robotics, the

two matters are seldom separable. For some of the robots described in the second part of this
book, sounds are an important component in their interface with the external world; for
others, sounds are an interesting addition that enriches their behavior.

If you are not familiar with musical terminology or audio file formats, you might find

topics in this chapter a bit complex. But the prize is worth the effort, because the tech-
niques explained here open exciting new opportunities in your robot world.You will dis-

cover how to use simple tones, how to write melodies, how to control your robot with
sound, and even how to convert digital audio files into sound effects that you can incor-
porate into your program!

Communicating through Tones
The N X T features an internal speaker. There is little evidence of it on the outside: The

N X T has four very small slits on the sides from which the sound emanates.You can alter the
volume of the speaker via the Set t ings interface. The sound system of the N X T is designed
to be accessed from your program; you have full control over the frequency (pitch) and the
duration of the notes.

The following examples, written in RobotC, include four basic instructions on how to

produce sounds, called ClearSound, PlaySound, PlaySoundFile, PlaylmmediateTone, and Play Tone.
Using the PlaySound statement, the N X T can output one of nine predefined sound patterns,
such as a blip, a double beep, or a short sequence of tones:

PlaySound (soundBlip) ;

PlaySound (soundBeepBeep) ;

PlaySound (soundFastUpwardTones) ;

PlaySound (soundDownwardTones) ;

www.syngress.com

Playing Sounds and Music �9 Chapter 8 161

The Play Tone command plays a single note of a given pitch (in hertz) and duration (in
hundredths of a second). The following statement plays a tone of 262 hertz for half a second:

PlayTone (262,50) ;

The N X T is capable of reproducing any frequency from 31 hertz to more than 18,000
hertz; however, you will usually limit yourself to the frequencies which correspond to the

musical notes (see the table in Appendix C). All the programming languages built over the
LEGO firmware offer this same feature, and most of the others include some kind of more

or less sophisticated control over sound.

Sounds are the most immediate way your N X T has to inform you about a specific situ-

ation. There is, of course, the display, but it's not always in sight, especially when your robot

is running across the room! There's also the ability to log data to a file on the NXT, but to

use the file you would have to access it from your PC. Sounds, on the other hand, can be
emitted by the robot without interrupting any other activities, and you can hear them even

if the robot is out of sight or far away.
Through simple sound patterns, you can make your robot inform you that an operation

has ended, something has gone wrong, its batteries are low, and much more. It can acknowl-
edge the push of a button, or tell you it's waiting for specific input from you. A sound emis-

sion can even be used to communicate with nonhuman robot fans, as in the case of

Katherine Anderson's SnackBot (see Appendix A), which fills a bowl with dog food before

emitting two high-pitched tones to let the family pet know that his dinner is ready.

Playing Music
Sometimes a sound pattern can give your creatures a specific character. Could you imagine a
silent reproduction of the famous R2-D2 droid from the Star Wars saga?

Music can enrich the personality of your robot even more than tone sequences.A
wrestling robot probably appears more resolute if, while facing its opponents, it plays
Wagner's "Ride of the Valkyries" rather than a Chopin piano sonata or nothing at all. And
any sort of dancing robot, without musical accompaniment, becomes just a robot that is
swinging its arms and moving around.

One of the easiest ways to play music on your N X T is to use a piano tool, which allows

you to simply click on a graphical keyboard to choose the notes you want the N X T to play.

To access the piano tool in NXT-G, create a sound block and select Tone; the piano tool

will appear in the configuration panel. For a more sophisticated tool, including a transposi-

tion function, try the piano tool in the Bricx Command Center application created by Mark

Overmars and maintained by John Hansen (see Appendix A). This will create an N X T

Melody file (with an .rind extension) which you can use in programs you write for the

NXT. Note that you also can use N X T Melody files in NXT-G sound blocks, but you

should save them in the appropriate directory with an .rso extension in order to get the file-

name to appear in the list of possible sounds that the sound block can play.

www.syngress.com

162 Chapter 8 �9 Playing Sounds and Music

A piano tool is a good way to create a short melody. However, if you want to code a
longer piece, you may find using the RobotC PlayTone statement to be more efficient. Every
note in the song requires two attributes: pitch and durat ion~the first expressed by a fre-
quency and the second by a time.You must introduce delays between the notes to let the
CPU wait out the note's duration before playing the next note.

PlayTone(440,50) ;

waitlMsec(50) ;

PlayTone(220,100) ;

waitlMsec(100) ;

In this example, the N X T plays an A (440 hertz) for half a second, waits for the note to

finish, and then plays another A (220 hertz) one octave below the previous note for one

second.

The N X T is limited to playing a single note at a time; thus, we say it's a monophonic

device. It is not capable of playing chords, which require two or more notes played at the

same time, but you can adjust note timing to get various effects. In our previous example,

the duration of the first note filled the entire interval before the second note, thus producing

a leg, ato effect.You can just as easily get a staccato effect~shortening the duration of the note

inside the interval produced by the wait 1Msec s ta tement~by introducing a pause with no
sound between the two notes:

PlayTone(440,10) ;

waitlMsec(50) ;

PlayTone(220,100) ;waitlMsec(100) ;

Coding a melody by hand is a long and tedious task. What happens if when you're fin-

ished, you discover that the execution is faster or slower than what you intended?

Unfortunately, you'd have to go back and change all the time intervals. A better approach
takes advantage of a feature that all textual programming environments offer: the definition
of constants. Using constants, you can make all the intervals relative to a specific duration that
controls the execution speed:

#define BEAT 50

PlayTone(440, BEAT) ;

waitlMsec (BEAT) ;

PlayTone(220, 2*BEAT) ;waitlMsec(2*BEAT) ;

The preceding code behaves exactly like our first example, but you'll see that by having

defined a constant, the code is clearer and easier to maintain, simply by changing the value

of B E A T to change the overall speed. We can extend the usage of constants to include note

frequencies as well, making our code more readable:

Playing Sounds and Music �9 Chapter 8 163

#define BEAT 50

#define A3 220

#define A4 440

PlayTone (A3, BEAT) ;

waitlMsec (BEAT) ;

PlayTone (A4, 2*BEAT) ;

waitlMsec (2*BEAT) ;

You can also patiently define a table of constants for all the notes, so you can reuse them
in many different programs"

#define Cl 33

#define Csl 35

#define D1 37

#define Dsl 39

//...

#define C4 262

#define Cs4 277

//...

#define B8 7902

The preceding table represents, for example, the D # note as Ds (D sharp) because most
languages don't allow the use of special symbols such as # in the names of constants and
variables. Don't worry about the length of this table, because constants get resolved by the
compiler and don't change the length of your actual code or the space it takes up in
memory.

Creating a soundtrack for your robot is a typical example of where multitasking proves
to be really helpful.You will typically enclose your song in a separate task, starting and stop-
ping it from the main task, as required by the situation.

Converting Sound and Music Files
If the preceding instructions for creating music for your N X T seem too involved, or if

you're not familiar enough with music concepts to use them, don't despair:You can still play

music on your N X T and even make it speak by using tools that convert different types of
sound files into code that your N X T can understand.

MIDI and MIDIBatch
The Musical Instruments Digital Interface (MIDI) is a complex standard that includes com-
munication protocols between instruments and computers, hardware connections, and

storage formats.A MIDI file is a song stored in a file according to the format defined by this
standard.

164 Chapter 8 ~ Playing Sounds and Music

MIDI files have achieved incredible success among professionals, amateurs, and instru-
ment manufacturers, and they are by far the most preferred way for musicians to exchange
songs. For this reason, you can easily find virtually any song you're looking for already stored

in a MID I file.
But what is a MIDI file? It is simply a sequence of notes to play, their duration, their

intensity, and, of course, a code that denotes the instrument to be used. Thus, a MIDI file is

not an audio file. It does not contain digital music such as CDs, WAV files, MP3 files, or

other common audio formats. Rather, it contains instructions for a player (either a human

being or a machine) to reproduce the song, almost a score, to be performed by actual musi-

cians. And as with a real score, the result rests heavily on who actually performs it. For MIDI

files, this means that the output depends on the device which renders the music: With a pro-

fessional MIDI expander, you can get impressive results, whereas execution of the notes by a

low-end PC audio card will probably be very poor. What makes MIDI files so interesting to

musicians is that they are easy to read and edit (with special programs) in terms of standard

musical notation.

So, the key question is whether there's a way you can render MIDI files with the NXT.

Though you cannot import them directly to the NXT, there's a very nice utility that can

convert any MIDI file into the proper code: MIDIBatch, a free conversion utility that is part

of the Bricx C o m m a n d Center project. This utility runs on both Windows and Mac OS X

machines and produces N X T Melody files, which have an .rmd extension.

Before we provide details regarding how to use MIDIBatch and what it can do for you,

there's another characteristic of MIDI files you must be aware of. The notes inside a MIDI

file are grouped into channels, and each channel is assigned to the instrument meant to repro-

duce those notes. For example, channel 1 could be assigned to an Acoustic Piano, channel 2

to a Bass Guitar, channel 3 to a Nylon String Guitar, and so on. Channel 10 is always
assigned to Drums, and channel 4 is usually, but not always, assigned to the melody l i n e ~

that is, the notes sung by the vocalist or played by the leading instrument. As explained ear-

lier, the N X T has monophonic sound capabilities and cannot reproduce more than one note
at a time, so you have to carefully choose the notes it plays.

Before you start converting a MIDI file into code, we suggest you explore using specific
software to see which channel could better render the idea of the song. Many commercial

products are capable of manipulating MIDI files in almost every possible way, but you don't

actually need all the power and complexity they provide. The Internet is crammed with free-

ware and shareware programs perfectly suitable for the task of identifying the best single

channel to be converted into instructions for the NXT.You open your MIDI file with the

editor, mute all the channels except one in turn, and decide which one to use. If you feel at

ease with the MID I editor, you can cut away some notes from the selected channel, because

you probably don't need the whole song, only a chunk of it (the part that contains the

refrain or main theme). If you do this through editing, you will save the modified MIDI file,

of course.

Playing Sounds and Music �9 Chapter 8 165

You can save a lot of work if you f ind a MIDI fi le meant to be used as a ring
tone. These typically have sound reproduct ion limits very similar to those of
the NXT.

Now you're ready to use MID IBatch. MID IBatch can convert many files at a time into

the N X T Melody format. To do this, open a M I D I B a t c h w i n d o w and type the name of

the file folder where the MID I files are stored in the Inpu t D i r e c t o r y box. Choose a

directory for the output, whether to convert all channels or just the first one, and click

Conver t . Converting all of the channels is usually not a good idea: The result will be almost

unrecognizable. To hear your N X T Melody file before you download it to your NXT, you

can use another Bricx Command Center utility called RMDPlayer. If you're satisfied with
the result, download the .rmd file to your N X T for use in your programs. Using the

RobotC PlaySoundFile statement is one way to do this:

PlaySoundFile("pachelbel canon.rind") ;

WAV2RSO
Another handy utility that is part of the Bricx Command Center is WAV2RSO, which is an

application that converts WAV files into the N X T sound file format and vice versa. Unlike

MIDI files, WAV files contain digitized audio ready to be executed. If you are familiar with
graphics file formats, you can think of MIDI files as vector graphics, whereas WAV files
resemble raster graphics.

There are some limitations to be aware of when converting WAV files into R S O files

for use on your NXT. The first is that the resulting R S O file will likely be huge by N X T
standards. For example, a WAV file created using text-to-speech software with just the word

Hello, when converted to an R S O file, may take up 20 KB. Just a couple of seconds of a

recorded song could require hundreds of kilobytes of space. Converting WAV files to RSO

files does decrease their size by approximately half, but space is still a major consideration. In

fact, WAV2RSO does not allow WAV files larger than 64 KB to be converted, likely because

the memory capacity of the N X T is only about 130.7 KB in total.You want to save a little
room for your program!

Another limitation is the volume at which an RSO file is played.You may find that

playing an R S O file while the NXT's motors run is pointless, because the whir of the

motors drowns out the sound coming from the small speaker. This is less of a problem with

.rmd files, so if you want your robot to move and sing at the same time stick with N X T

Melody files rather than converted WAV files.

www.syngress.com

166 Chapter 8 �9 Playing Sounds and Music

Despite these limitations, the ability to play sound effects and to hear your robot "talk"
makes WAV2RSO a great tool for enhancing your robot's character. Look for WAV files that

emulate sci-fi sound effects such as laser guns, jump sparks, and buzzing. Seek out free text-

to-speech conversion software on the Web and create WAV files of phrases you want your

robot to say. Then, use WAV2RSO (which you can use in a manner very similar to
MIDIBatch) to convert these files into R S O files. Upload the R S O files to your NXT, use

them in your programs, and watch your robot come alive.

The Sound Sensor
Aside from making sounds, the N X T is also capable of detecting sounds and reacting to

them. When the sound sensor is attached, the N X T can "hear" sounds happening around it

and determine the decibel level of the sounds. The N X T cannot distinguish different tones,

but it can tell the difference between a soft noise and a loud one. So, for example, you can't

program it to start when you say "Start" and stop when you say "Stop," but you can program

it to adjust its speed (for example) according to the level of sound that it is detecting.

When the sound sensor is attached to the NXT, the robot constantly polls the sensor for

data. The sound data can be normalized to a percent value, so the value of the sound sensor

can range from 0 to 100. Robo tC provides access to this value via the Sensor Values array. It
also provides a configuration wizard for creating the necessary constants to help you access

this array. For example, if the sound sensor is plugged into sensor port 2, the wizard will

place this code at the beginning of the RobotC program:

const tSensors soundSensor = (tSensors) $2;

Now the soundSensor constant provides an index into the SensorValue array, and this value
can be assigned to the motors:

while (t r u e) {

motor[motorB] = SensorValue[soundSensor] ;

motor[motorC] = SensorValue[soundSensor] ;

}

You can use the sound sensor to make one robot appear to control another. For

example, program Robot 1 to play a sound file with a voice saying "Follow me" and have

Robot 2 move forward when it detects a certain level of sound. Keep in mind that the noise

of Robot l's motors may also be enough to set Robot 2 in motion, depending on how

close together the robots are and what level of sound you've programmed Robot 2 to

respond to. In the following example, Robot 2 waits until the sound sensor value reaches 15
percent before following Robot 1:

while (true) {

waitlOMsec(lO0) ;

currentValue = SensorValue[sound] ;

Playing Sounds and Music �9 Chapter 8 167

if (currValue >=15) {

motor [motorB] = I00 ;

motor[motorC] = I00;

Through some skilled manipulation of NXT-G, Sivan Toledo has created a clap counter
for the NXT. Using sample sound data gathered by the NXT, Toledo was able to determine

a typical pattern of values that his N X T would detect when he clapped. Using this, he

enabled the robot to count the number of claps it detected and show that number using the

N X T graphical display. The NXT-G code for the clap counter is available on Toledo's Web
site (see Appendix A).

Summary
The purpose of this short journey into the sound system of the N X T was to show that,
despite its limitations, it's still an invaluable resource. It can support you in debugging, return
information in the form of sounds of different patterns or frequencies, and complete the
personality of your robots.

RobotC offers two commands to control the sound system: PlaySound to perform pre-
defined sound patterns, and Play Tone to play any note of a desired pitch for the desired dura-
tion. Whereas PlaySound is suitable for most user interface needs, Play Tone offers finer
control and lets you create melodies.

Thanks to the work of independent developers, you can convert some of the most
common digital audio formats straight into either R S O files or N X T Melody files.
Considering the hardware limitations of the NXT, MIDI files translate very well and are the
ideal candidates to provide your robots with a musical soundtrack. The conversion of WAV
files is somewhat problematic because of the large size of a typical WAV file. Nevertheless,
this sound format can equip your robot with amazing sound effects, including speech.

The sound sensor makes the N X T capable of responding to noises, though it can distin-
guish sounds based only on their decibel levels and not on the nature of the sound. Still, the
possibilities for utilizing the sound sensor are broad and the field is young. Sivan Toledo's
clap counter hints at future work that could include teaching the N X T to detect certain
sound patterns and respond in different ways.

www.syngress.com

This Page Intentionally Left Blank

~::ii!!iii!:

Chapter 9

Becoming Mobile
So lu t i ons in th is chapter "

• Building the Simple Differential Drive

• Building a Skid-Steer Drive

• Building a Steering Drive

m Building a Synchro Drive

• Other Configurations

170 Chapter 9 �9 Becoming Mobile

Introduction
Most robots are designed with some kind of mobility in mind. Motion makes your creatures
animated and "alive," and offers a limitless number of interesting, fun, and challenging pro-
jects with which to test your creativity and skills. Most mobile robots belong to one of two
categories: wheeled robots or legged robots. Though legs provide an effective way to move on

rough terrains, wheels are generally much more efficient on smooth surfaces.
In this chapter, we will survey some common wheeled mobility configurations, dis-

cussing some of their pros and cons. Please bear in mind that the chassis shown in the fol-

lowing examples are designed to highlight the details of gearings and connections, and for

this reason, some of them need reinforcement to be used in actual robots.

Building the Simple Differential Drive
If you have built some of the robots in the NXT-G P, obo Center, or put together the test

platform outlined in Chapter 6, you're already familiar with the differential drive architecture.

It has so many advantages, particularly in its simplicity, that it's by far the most often used

configuration for LEGO mobile robots.
A differential drive is made of two parallel drive wheels on either side of the robot,

powered separately, with one or more casters (pivoting wheels) which help support the

weight but that have no active role (see Figure 9.1). Note that it is called a differential drive

because the robot motion vector results from two independent components (it's of no rela-
tion to the differential gear, which isn't used in this configuration).

Figure 9.1 A Simple Differential Drive

Becoming Mobile �9 Chapter 9 171

When both of the drive wheels turn in the same direction at the same speed, the robot

goes straight. If the wheels rotate at the same speed but in opposite directions, the robot

turns in place, pivoting around the midpoint of the line that connects the drive wheels. Table

9.1 shows the behavior of a differential drive robot according to the direction of its wheels
(assuming that when it's in motion they run at the same speed).

Table 9.1 Behavior of a Differential Drive Robot According to the Direction of Its
Wheels

Left Wheel Right Wheel Robot

Stationary Stationary
Stationary Forward

Stationary Backward

Forward Stationary

Forward Forward
Forward Backward
Backward Stationary

Backward Forward
Backward Backward

Rests stationary
Turns counterclockwise, pivoting
around the left wheel
Turns clockwise, pivoting around the
left wheel
Turns clockwise, pivoting around the
right wheel
Goes forward
Spins clockwise in place
Turns counterclockwise, pivoting
around the right wheel
Spins counterclockwise in place
Goes backward

At different combinations of speed and direction, the robot makes turns of any possible
radius. This maneuverability, the capability to turn in place in particular, makes the differen-
tial drive the ideal candidate for a broad class of projects. Add to this the fact that it is very
easy to implement, and you can understand why a significant percentage of all mobile
LEGO robots belong to this category.

If tracking the robot position is one of your goals, again the differential drive is a good
candidate, requiring very simple math.

There's only one real drawback to this architecture" It's not easy to get your robot to

move in a perfectly straight line. Because no two motors have exactly the same efficiency,

you will always have one wheel turning a bit faster than the other, thus making your robot
turn slightly left or right. In some projects, this isn't a problem, particularly those pro-

grammed for continuous route correction, such as following a line or finding a path through

a maze. But when you want your robot to simply go straight in an open space, this problem
can be really frustrating.

www.syngress.com

172 Chapter 9 �9 Becoming Mobile

Keeping a Straight Path
One of the most significant changes moving from the M I N D S T O R M S Robotics Invention

System (1KIS) to the N X T is the inclusion of rotation sensors (encoders) in the servo motors

(Chapter 4 goes into detail on this). In a nutshell, the encoders allow motor rotations to be

monitored to the nearest degree. This addition provides the means for your robot to drive

straight. Combined with the NXT-G Move block, you can now build robots that go almost

perfectly straight and auto-correct themselves along the way.

Although this new feature of the N X T system has provided new ways to keep your

robot tracking straight, it is still important to understand the concepts behind differential

drive mechanisms. In this chapter, we will discuss alternative approaches including both the

sensor-based approach as well as using gears.

Using Servo Motor Encoders to Go Straight
A more sophisticated approach that has several positive side effects requires you to introduce

a feedback mechanism into your system, thus controlling each wheel with sensors and

adjusting their speed according to the readings. This is what most of the "real-life" differen-

tial drives do. As noted previously, the new N X T servo motors have a high-resolution rota-

tion sensor built right in, making this process very easy to do.
In fact, this is so easy to do that you can have a robot up and running in less than 15

minutes. Start by building a simple robot such as the TriBot from the NXT-G 1Kobo Center.

The only requirement is that you have two drive motors, each attached to a drive wheel. I n

the NXT-G, create a simple program using the Move block. This block is different from the

standard Motor block in that it allows for two motors to be paired together so that the soft-
ware can monitor both of their rotation sensors simultaneously to allow for automatic cor-

rection to keep them driving straight. Figure 9.2 shows a simple NXT-G program that will
enable your robot to drive straight. The differential process is handled entirely within the

Move block by "watching" the rotation sensors on each motor. If one of them falls behind,
the N X T will increase the power on the lagging motor to allow it to catch up with the
other. In addition to this, the software may also reduce the speed of the other motor if the

lagging motor does not catch up in time.

Figure 9.2 NXT-G Drive Straight Sample Program

Becoming Mobile �9 Chapter 9 173

To test this feature, create the robot and set the motor speed such that you can follow

along beside the robot. As it is driving forward, use your finger to slow down one of the

wheels.You should see it speed up that wheel after you let it go. If you hold the wheel long

enough, the N X T should stop the other drive motor.

Although we don't recommend that you stall a motor for a prolonged period
of time, you don't have to worry about doing it for a brief period of time as
motors are protected by a thermistor, which will automatically cut power if
the motor heats up excessively.

Using Gears to Go Straight
As noted earlier, it is important to understand the concept behind a differential drive mecha-
nism. To do this, we demonstrate using the LEGO differential gear drive mechanism in
Figure 9.3.

Figure 9.3 A LEGO Differential Drive Unit

It functions in much the same way as a vehicle differential operates, the basic principle

being that the motor drives the differential housing via a main drive gear, "A". The differen-

tial is geared such that both wheels turn at the same direction and speed, "B" and "C". This

enables smooth transfer of power when a vehicle is turning. On the flip side, if one wheel is

on a slick surface (e.g., ice), most of the power will divert to it as there is less friction.You

have likely heard the term limited slip differential in vehicle discussions~this feature uses

mechanical or hydraulic clutches to divert power away from the wheel that is slipping to the

one that is not. This way, the differential functionality is still available, but it is monitored so

www.syngress.com

174 Chapter 9 �9 Becoming Mobile

that slip is limited. Most vehicles today use some form of this mechanism. A LEGO-only
sample of this is shown later in this chapter, and Chapter 2 also has some additional informa-

tion on this.
If you connect the drive wheels with a differential so that one wheel enters the differen-

tial with a direction that's inverted with respect to the other, the body of the differential

itself should stay still when the wheels rotate at the same speed. Figure 9.4 shows a standard

differential drive platform. Both N X T motors drive each wheel directly, and are connected

to the differential unit via a series of gears such that their directions are inverted. When both

motors are driving the same speed, the differential unit will remain stationary. If the motors
are not in sync, the differential will turn for the duration that the motors are not in sync.

Why would you do this, you ask? Well, it provides a means to monitor when motors are

driving at different speeds. When they are driving in sync, the differential will remain sta-

tionary. As their speeds vary, the differential will slowly turn.

Figure 9.4 A Differential Drive Platform

Trying to watch the differential to see any change while your robot is moving is quite

difficult. Figure 9.5 shows the top of a demo robot built with the aforementioned differen-

tial drive and provides an analog method of measuring differences among motor speeds. The

large 40T gear is linked to the differential unit (see Figure 9.4). On top of it is a wedge that

is pointed directly at a stationary wedge. This is a crude measurement device and marks the

start point for when the robot is stopped. As the robot drives along, the 40T gear will turn if

one motor is slowed relative to the other.You can test this by creating the robot, and instead

Becoming Mobile �9 Chapter 9 175

of using a Move block in the NXT-G, try using two Motor blocks (1 for each motor). Do a

trial and force one wheel to slow down.You should notice the wedge move and not recover

back to center. After this test, create another program in the NXT-G using the example from

Figure 9.2. When trying to slow one motor, you may notice a temporary shift in the wedge,

but through the N X T software, the Move block will correct this and the wedge should come

back to center somewhat.

Figure 9.5 Demo Robot: Differential Drive Platform

O f course, you might ask why you should bother creating a crude analog measurement

device such as this when you can use the N X T display to simply show the rotation values

for each motor. Good idea! Figure 9.6 is a sample NXT-G program that will drive the

aforementioned robot forward for a period of time and display the encoder values for both

motors on the screen.

www.syngress.com

176 Chapter 9 �9 Becoming Mobile

Figure 9.6 NXT-G Watching the Motor Encoders

When running the robot, try slowing down one wheel while it drives, and you will see
the encoder values change, but be quick, as the Move block will correct this. If you stop one
wheel completely, you will notice the other one stop shortly afterward.

If you find yourself using some of the older IKIS-based motors that don't have built-in
rotation sensors, you are still in luck. A more radical solution is to lock the wheels together
when you need to go straight. This system is very effective, making your robot go perfectly
straight, but it requires a third motor to activate the locking system as well as some addi-
tional gearing, which makes the solution less than compact. Figure 9.7 shows an example
using legacy M I N D S T O R M S parts of a locking mechanism that requires special parts: a
dark gray 16t 2ear with clutch, a transmission driving rin2, and a transmission chan2eover catch,
which combine in a sort of clutch mechanism (see Figure 9.8). That special gear has a cir-
cular hole instead of the standard cross-shaped hole; thus, it rotates freely on the axle. The
driving ring should then be mounted on an axle joiner. When you push the driving ring
into the gear (with the help of the changeover catch), the gear becomes solid with the axle.

Figure 9.7 A Lockable Differential Drive

r �9

www.syngress.com

Becoming Mobile �9 Chapter 9 177

Figure 9.8 The 16t Gear with Clutch, the Transmission Driving Ring, and the
Transmission Changeover Catch

Using Casters to Go Straight
Casters are another key factor in getting your differential drive moving and turning

smoothly. Most often, though, they are not given enough consideration. Figure 9.9 shows a

typical coupled caster wheel assembly. Unfortunately, its design is limiting and it will skid or

jam. It uses two wheels coupled on the same axle and doesn't allow the wheels to turn inde-
pendently. Keep the assembly gently but firmly pressed on a table, and try to rotate it in a
tight t u rn - - i t doesn't turn very well, does it? In fact, unless you let one of the wheels skid, it
doesn't turn at all.

The casters shown in Figure 9.10 get much better results. The one on the left uses a
single wheel, thus avoiding the problem entirely. The one on the right, which is more solid,
uses two free wheels that allow the caster to turn in place without friction or slippage prob-
lems. The difference is in the wheel hubs. In the assembly on the left, the axle turns with the

wheel, whereas the one on the right has the wheels spinning on the axle. Other casters are

shown in Figure 9.11.

www.syngress.com

178 Chapter 9 �9 Becoming Mobile

Figure 9.9 A Coupled Caster

Figure 9.10 Casters Designed to Avoid Skidding

www.syngress.com

Becoming Mobile �9 Chapter 9 179

Figure 9.11 Other Casters

The choice of using one or more casters depends on the task for which the robot is

designed. A single caster is enough for most applications, but two casters at the front and rear

of the robot are a better option when stability is important.

In some cases, as with a simple robot of limited weight that has a smooth surface on

which to navigate, you can substitute the caster with inverted round tiles or other parts that

provide limited friction when coming into contact with the floor (see Figure 9.12).

Figure 9.12 Inverted Round Tiles Can Replace Casters

Another less widely used method for casters is a plastic ball. If your robot is running on

a smooth surface, a large ball acts quite well as a caster. Figure 9.13 shows a demonstration of

this connected to two N X T motors .The caster cage unit is mounted such that it cups the

ball and allows for some freedom of movement for the ball. The entire cup structure is also

180 Chapter 9 �9 Becoming Mobile

able to pivot up and down as well so that it handles bumps better. The advantage of this
approach is that you have no caster wheels to get caught up, and the ball will turn if it can;
otherwise, it will simply drag along the surface. As long as the surface is smooth, it works
like a charm. This approach will not work well if you are running your robot across a surface

that has a rubbery texture. Although the ball turns freely within the cup structure, it is still

subject to friction within it.

Figure 9.13 Ball Caster Base

Building a Skid-Steer Drive
A skid-steer drive is a variation of the differential drive. It's normally used with tracked vehi-
cles, but sometimes with four- or six-wheel platforms as well. For tracked vehicles, this drive
is the only possible driving scheme. Good examples of skid-steer drives in real life are exca-
vators, tanks, and a few high 'end lawnmowers.

Figures 9.14 and 9.15 show pictures of Bryan Bonahoom's N X Tracker and Dave

Astolfo's U N V tracked robots. Both use a tracked skid-steer drive with U N V employing an

additional set of tracks at the front that can pivot to provide additional navigation function-

ality. Each track is powered by its independent motor.

The advantage of a skid-steer drive is its capability to turn on the spot, which allows

vehicles of this type to operate in tight areas. The downside to this is that when turning

there is a lot of friction on surfaces such as carpets. If you are running rubber tracks, you

also get the added advantage of climbing capability, but if you are running ones such as those
shown here, expect some slippage~unless, of course, you find some rubber grommets that

just happen to fit the TECHNIC-s ize pin holes in each link.

Becoming Mobile �9 Chapter 9 181

Figure 9.14 Bryan Bonahoom's NX Tracker" A Tracked Skid-Steer Drive

Figure 9.15 Dave Astolfo's UNV: A Variable-Tracked Skid-Steer Drive

www.syngress.com

182 Chapter 9 �9 Becoming Mobile

A wheeled skid-steer drive requires a trickier setup.You must transmit the power to all

the wheels; otherwise, your platform won't turn smoothly, or it might not even turn at all.

The model shown in Figure 9.16 uses a number of 24t gears connected by a common chain

drive for each side receiving power from two motors, as in the tracked version. This platform

serves well as it is strong, fast, compact, and light.You can add an NXT, and there is plenty of

room for sensors, or even a grabber arm.

Figure 9.16 A Wheeled Skid-Steer Drive

Tracked robots are easy to build and fun to see in action, thus placing them among the

favorites of many builders. Just as with differential drives, when the tracks go in the same

direction, the robot goes forward; differences in their speeds or directions make the robot

turn; in-place steering is possible too. Skid-steer drives also share with differential drives the

same difficulties in getting them to move in a straight line.

Here is where the similarities end, and some peculiarities of skid-steer emerge:

�9 Tracks have a better grip than wheels do on rough floors and terrains, but this is

not true on smooth surfaces.

�9 Tracks introduce more friction which uses up some of the power supplied by the

motors.

Becoming Mobile �9 Chapter 9 183

The unavoidable skidding intrinsic in the nature of these vehicles makes them
absolutely unsuitable for applications where you need to determine the position by
utilizing the motion of the robot.

Building a Steering Drive
A steering drive is the standard configuration used in cars and most other vehicles that features
two front steering wheels and two fixed rear wheels. Thankfully, it's suitable for robots too.
You can drive either the rear or the front wheels, or all four of them, but the first is by far
the easiest solution to implement with LEGO parts, so this is what we'll cover here. Though
less versatile than differential drives, and impossible to steer in place or in very tight turns,
this configuration has many advantages: It's very easy to drive straight, and it's very stable on
rough terrain. Figure 9.17 shows a simple steering platform created by Laurens Valk
(Appendix A).

Figure 9.17 Laurens Valk's "NXT-Only" Steering Drive

The mechanics are straightforward. Two motors drive the rear wheels (one for each) and
one motor drives the steering mechanism. Unlike a skid-steer drive, this setup provides sepa-
rate control of the steering and drive motors, allowing for more precision in steering, but
lacksing the capability to turn in place. The steering unit (see Figure 9.18) is geared to offer
fine control over the steering and uses a rack and pinion structure where a series of gears
combine with a special plate with teeth, a sort of"unrolled gear" (the rack) which is

www.syngress.com

184 Chapter 9 �9 Becoming Mobile

connected to the wheels to provide steering. This is also a nice demonstration of studless
building techniques.

Figure 9.18 "NXT-Only" Steering Drive" Close-Up

www.syngress.com

Becoming Mobile �9 Chapter 9 185

Figure 9.19 Ackerman Steering Scheme" The Inner Wheel Turns More than the
Outer One

When you build the steering assembly, you can move the wheel behind its pivoting axle
for self-centering steering (an advisable property in many situations). In version "a" in Figure

9.20, you see a wheel mounted just below the pivoting axle, which does not affect the

steering. If you mount the wheel behind its steering column, friction causes the dynamic

forward motion of the car to push the wheels toward the rear, resulting in a self-centering

action. Look at the design of a shopping cart, and you will see that the actual wheel contact
area is behind the pivoting axis. The more you move the wheel behind the pivoting axis, as

in versions "b" and "c," the more self-centering you get. Don' t ever mount the wheel in

front of the pivoting axle, as in version "d."This will make your steering unstable. In fact, the
wheel will tend to go toward the rear, causing your car to turn spontaneously.

Figure 9.20 Moving the Wheel from the Pivoting Axle

www.syngress.com

186 Chapter 9 �9 Becoming Mobile

We encourage you to experiment with these concepts, building a simple chassis and
exploring the properties of the various assemblies shown in Figure 9.20.

The steering drive is a suitable configuration for rough terrains, because it's very stable
on its four wheels.You can improve the grip of the wheels on the ground by using some
kind of suspension. It's very important that none of the drive wheels permanently loses con-
tact with the ground; otherwise, the differential would find the path of least resistance and
transfer all the power to that wheel, resulting in the wheel spinning and your robot
becoming immobilized.

A limited slip differential can help reduce this problem (see Figure 9.21) by connecting the
wheel axles to a common supplementary axle through pulleys and belts. The belts tend to
keep the driven axles rotating at the same speed, but during turns they slip a bit on their
pulleys, allowing the wheel to adjust their speeds. Should a wheel lose contact with the
ground, the belts will still be able to transfer a good portion of power to the other wheel.
Alternatively, you could try to integrate two T E C H N I C clutch gears (see Figure 9.21, top
right). Simply replace the two wheel hubs with the clutch gears, move the axle closer, and
substitute 2x24T gears in place of the pulleys attached to the differential.The T E C H N I C
clutch gears have a measured amount of slip built into them which will cause the outer
(white) section to turn independently from the inner (dark gray) axle unit when enough
force is applied.

r

www.syngress.com

Becoming Mobile �9 Chapter 9 187

Figure 9.21 A Limited Slip Differential

Building a Synchro Drive
A synchro drive uses three or more wheels, all of them driven and steering. They all turn
together in sync, always remaining parallel; thus, the robot changes its direction of motion
without changing its orientation.

Synchro drives are quite challenging to build with LEGO parts.Years ago, these types of
robots were few, but, if you navigate the Internet now, you can find many well-designed
LEGO synchro drives out there.

To make a full 360-degree synchro drive and avoid any limitations in its turning capa-
bility, the key point is to transfer motion along the pivoting axle of each wheel. The simplest
approach requires a special part called the turntable, a large, round, rotating platform usually
employed in LEGO models to support revolving cranes or excavators (see Figure 9.22).

www.syngress.com

188 Chapter 9 �9 Becoming Mobile

Figure 9.22 The LEGO Turntable

You can attach two pulley wheels and drive it with an axle that passes through the
center of the turntable. In Figure 9.23, you can see an example of this technique. Notice the

orientation of the tu rn tab le~ the black side is connected to the wheel assembly. This is nec-

essary because the wheel must be connected to the part of the turntable that gets rotated by

the external gear. This way, you can attach the top (gray) side to the stationary portion of the
robot with the black section being driven by the common steering motor.

Figure 9.23 A Wheel Assembly for a Synchro Drive

www.syngress.com

Becoming Mobile �9 Chapter 9 189

To build a complete synchro drive, you need at least three of these turntables. Then you

have to connect them so that one motor can drive all the axles at the same time, while

another can turn all the wheels in sync.

In Figure 9.24, you see the bottom view of a four-wheeled synchro drive created by

Preston Hervey. These robots tend to have a large number of gears and pieces in small areas,

so it is difficult to point out the mechanics here. However, the principle behind driving

them is quite simple. One motor is connected to a common geartrain that drives an axle

down the center of the turntable to turn the small drive wheels which give it motion, while

the other motor is connected to a common geartrain that drives the outer turntables (black

sections seen here) to allow it to turn.

Figure 9.24 Preston Hervey's Synchro Drive (Bottom View)

Figure 9.25 shows a side view of the same platform:You can see here that each turntable

top portion (gray) is connected to the stationary part of the robot. This allows the bottom

(black) section to be turned. The common drive motor geartrain can be seen with the gears

and chain drive (top middle), then each of these transfers into a worm drive, then to a 24T

gear, then down an axle into the center of the turntable. This mechanism is what sets it in

motion.

Regarding a synchro drive robot, there is no real ""front, DacK," " or sides." Because it

can turn on the spot, the front simply becomes the side that is moving forward. However,

for programming, you can arbitrarily pick a side that you consider the "front" to provide

something to start with.

"- o -" www.syngress.c m

190 Chapter 9 �9 Becoming Mobile

Figure 9.25 Preston Hervey's Synchro Drive (Side View)

Synchro drives are quite amazing to see in action, and yours will be no exception. But if
you expect it to navigate the room detecting obstacles, your challenge isn't quite over yet:

You still have to manage bumpers. Because there is no concept of"front" and "rear," you
have to place bumpers all around it. Or you could simply use a single omnidirectional sensor
such as the one shown in Figure 9.26; the touch sensor is normally closed, but it opens
whenever the upper axle departs from its default position (kept by the rubber bands). Note

that the figure shown here was built as a sample for demonstration purposes. It is not com-

plete and would require additional modifications to integrate fully into your robot. Surround

your robot with a ring of tubes or axles, connect the ring to the omnidirectional sensor, and

that's it!

Becoming Mobile �9 Chapter 9 191

Figure 9.26 An Omnidirectional Touch Sensor

Other Configurations
Our roundup doesn't cover all the possible mobile configurations. There are other, more
sophisticated or specialized types:

�9 Mult i -Degree-of -Freedom (MDOF) vehicles M D O F vehicles have three or
more wheels, or groups of wheels, both independently turned and driven. Imagine
a synchro drive where each wheel can change its speed and direction with no con-
nection to the others: Such a robot would be able to behave like a differential
drive, a steering drive, or a synchro drive just by controlling its configuration from
the software. Though interesting to study and very versatile in their use, they are
also extremely difficult to build and control. In fact, not all of their possible config-
urations result in a coordinated motion?

�9 Articulated drive This is very similar to the steering drive, but instead of steering

the wheels, it steers a whole section of the vehicle. The front wheels always remain

parallel to the front part of the chassis, and the same applies to the rear wheels in

regard to the rear portion of the chassis. Nevertheless, the two sections connect

through an articulation point that lets them pivot in the middle. This configuration
is common in wheeled excavators and other construction equipment.

www.syngress.com

192 Chapter 9 �9 Becoming Mobile

�9 Pivot drive Keith Kotay defines a pivot drive as a configuration made of a chassis
with nonpivoting wheels with a platform in the middle that can be lowered or
raised. When the platform is up, the robot moves perfectly straight on its wheels.
When it requires turning, it stops and lowers the platform until the wheels don't
touch the ground anymore. At this point, it rotates the platform to change its
heading, and then raises the platform again and resumes a straight motion.

�9 T r i - S t a r w h e e l d r i v e The Tri-Star configuration has been designed for high-
mobility, all-terrain vehicles. Each "wheel" is actually an equilateral triangle with
wheels in each vertex; the vehicle features three of them for a total of 12 wheels.
The wheels turn, and the triangles can also turn like larger wheels. During normal
motion, two wheels of each triangle touch the ground, but when a wheel sticks
against an obstacle, a complex gearing system transfers motion to the triangular
structure, which turns and places its upper wheel past the obstacle. As complicated
to build as it is interesting?

�9 Ki l lough p l a t fo rm Developed by Francois Pin and Stephen Killough, the official
name of this mechanical configuration is Omnidirectional Holonomic Platform
(OHP). Holonomy is the capability of a system to move toward any given direction
while simultaneously rotating. Although conventional wheeled vehicles aren't holo-
nomic at all, this platform allows for unprecedented mobility. Seen from the top, a
Killough drive shows three wheels placed at the vertices of an equilateral triangle.
Each "wheel" is a sort of sphere made of actual wheels combined together and
used in a quite unconventional way: on their side? For a nice demonstration of this,
check out Steve Hassenplug's O M N I (Appendix A).

We hope we've made you curious about these configurations, and we invite you to find
out more about them using the reference material provided in Appendix A.You can build all
of them from LEGO parts, and they'll give you further challenges for when the standard
configurations shown in this chapter have become old hat.

Summary
This chapter was quite dense, but we hope we were able to help you to choose a drive con-
figuration. When building a mobile robot, different architectures are relevant to its resulting
shape and, most important, to its performance.

The differential drive is simple and versatile, but it can't go straight. The steering drive,
meanwhile, goes straight but cannot turn in place. The skid-steer drive can do both, but its
drive is not as smooth. Robotics is like cooking: There are many recipes for the same dish,
but to be successful you still must know the ingredients well and use them in the right pro-
portions. Of course, don't forget to add the most important ingredient of all: your creativity.

...... !:!i,:ii!iii!:: ! !i!!!!!i!!!!!!!!ii!!

Chapter 10

Getting Pumped:
Pneumatics

Solu t ions in th is chapter :

• Recalling Some Basic Science

• Pumps and Cylinders

• Controlling the Airflow

• Building Air Compressors

= Building a Pneumatic Engine

194 Chapter 10 �9 Getting Pumped" Pneumatics

Introduction
Pneumatics is the discipline that describes gas flow and how to use the properties of gas to
transmit energy or convert the same into force and motion. Most pneumatic applications use
that gaseous mixture most widely available~air~and the LEGO world is no exception.

Pneumatics is a great tool for robotics, and is especially useful when your mechanisms
need linear motion or an elastic behavior. It's also a very functional way to store energy for
subsequent uses. We will briefly cover the basic concepts of pneumatics, and then put those
theories into practice, explaining how LEGO pneumatic components work and what you
can do with them, and along the way showing you how to stop and start airflow in order to
produce motion in your robot. By the end of the chapter, you should be up to speed on
many pneumatic components, including valves, pumps, cylinders, compressors, and pneu-

matic engines.

Recalling Some Basic Science
To understand pneumatics, you have to recall the properties of gases. The most important
property is that gases have neither specific shape nor volume, because they expand and fill all
available space within a container. This means the quantity of gas inside a tank does not
solely depend on the tank's volume. The greater the quantity of gas in a given volume, the

higher its pressure.

The science that describes the properties of gases is called thermodynamics.
Its Ideal Gas Law relates four quantities: volume, pressure, temperature, and
mass (expressed in moles). In our simplified discussion, we will deliberately
ignore temperature because, in our situation, it shall essentially remain con-
stant throughout.

We all have the opportunities to experiment with pneumatics using everyday objects.
The tires of a bicycle are a good example: Their inner volume is constant, but you can
increase their pressure by pumping air in. The more air inside, the greater the pressure, and
the more it opposes external forces~in other words, the tires become "harder."

This example leads to a second important property of compressed gases: their pushing
outward on the walls of their containers illustrates their elasticity. Elasticity is the property of
an object that allows it to return to its original shape after deformation. The greater the elas-
ticity, the more precisely it returns to its original configuration. In the example of the
bicycle tire, if you push your finger against it, you can temporarily create a dimple in the

Getting Pumped: Pneumatics �9 Chapter 10 195

surface, but as soon as you remove your finger, the tire resumes its shape--the greater the
pressure inside, the higher the resistance to deformation.

The fact that gases are so easy to compress is what makes pneumatics different from
hydraulics (the science of liquid flow). Essentially, liquids are uncompressible.

When you compress a gas into a tank, increasing its pressure, you are essentially storing
energy. Pressure can be interpreted also as a density of energy, that is, the quantity of energy

per unit volume. This leads to a very interesting application of pneumatics:You can use tanks

to accumulate energy, which can be released later when needed.You pump gas in to increase

the pressure in the tank, storing energy, and you draw gas out to use that energy, converting

it into motion.

A flow of air or gas in general is produced by a difference in pressure: The air flows from

the container with the higher pressure into the one with the lower pressure, until the two

equalize. (In this context, we've giving the term container the widest possible meaning. It can

be a tank, a pipe, or the inner chambers of a pump or cylinder.)

Pumps and Cylinders
LEGO introduced the first pneumatic devices in the T E C H N I C line during the mid-1980s,

and then a few years later modified the system to make it more complete and efficient. T h e

T E C H N I C line has a long tradition of impressive pneumatic sets, including trucks, cranes,

excavators, and bulldozers.

The basic components of the LEGO pneumatic systems are pumps and cylinders (see

Figure 10.1). The function of a pump is to convert mechanical work into air pressure. Pumps

come in two kinds: the large variety, designed to be used by hand, and its smaller cousin,

suitable for operation with a motor. Cylinders, on the other hand, convert air pressure back
into mechanical work, and come in two different sizes as well.

Figure 10.1 Pumps and Cylinders

www.syngress.com

196 Chapter 10 �9 Getting Pumped: Pneumatics

Figure 10.2 shows a cutaway of the large pump in action. When you press its piston
down, you reduce the volume of the interior section, thus increasing the pressure and
forcing air to exit the output port until the inner pressure equals that outside. When you
release the piston, the spring pushes the piston up again; a valve closes the output port so as
not to let the compressed air come back inside the pump, while another valve lets new air
come in around the piston rod. The small pump follows the same working scheme exactly,
with the difference being that it doesn't contain a spring and its piston needs to be pulled
after having been pushed. It's designed to be operated through an electric motor.

Figure 10.2 Cutaway of the Large Pump in Action

Cylinders are slightly different from pumps. A cylinder's top is airtight and doesn't let air
escape from around the piston rod. The piston divides the cylinder into both a lower and an
upper chamber, each one provided with a port. The basic property of a pneumatic cylinder
is that its piston tends to move according to the difference in pressure between the cham-
bers, expanding the volume of the one with higher pressure and reducing the other until the
two pressures equalize, or until the piston comes to the end of its stroke. When you connect
the lower port to a pump using a tube, and supply compressed air into the lower chamber,
its pressure pushes the piston up. Doing this, the volume of the chamber increases, and this
lowers the pressure until it's equal to that of the upper chamber. During the operation, the
port of the upper chamber has been left open, so its air can freely escape, reaching equilib-
rium with the outside air pressure. Similarly, when you connect the upper port to the pump,
and supply compressed air, the piston moves down (see Figure 10.3).

www.syngress.com

Getting Pumped: Pneumatics �9 Chapter 10 197

Figure 10.3 Cutaway of the Large Cylinder in Action

Surely you don't want to move the tube from one port or the other to operate the

cylinder: It may work, but it's not very practical. The LEGO valve has been designed precisely

for this task: It can direct the airflow coming from a pump to either one of the two ports of a
cylinder, while at the same time let the pressure from the other chamber of the cylinder dis-
charge into the atmosphere (see Figure 10.4).The valve also has a central (neutral) position,

which traps the air in the system so that the cylinder can move neither up nor down.

Figure 10.4 The Basic Pneumatic Connection

198 Chapter 10 �9 Getting Pumped: Pneumatics

The LEGO tubing system is completed by a T-junction and a tank (see Figure 10.5). T-

junctions allow you to branch tubes, typically to bring air from the source to more than a

single valve. The tank is very useful for storing a small quantity of compressed air to be used

later. We explained that increasing pressure is like storing energy; thus, the air tank can be

effectively considered an accumulator: Charge it with compressed air and release it through

the valve when necessary to convert that energy into mechanical work.

Figure 10.5 A T-Junction and a Tank

Pneumatic cylinders provide high-power linear motion, and thus are the ideal choice for

a broad range of applications: articulated arms or legs, hands, pliers, cranes, and much more.

In describing the basic concepts of pneumatics, we told you that compressed gases tend to

make their containers react elastically to external forces.You can test this property with

LEGO cylinders, too: Connect a cylinder to a pump and operate the pump until the piston

of the cylinder extends in full. Now, press the rod of the cylinder.You can push it down, but

as soon as you stop applying force, the rod comes back up again. This property is quite desir-
able in many situations.

Let's suppose you're going to build a robotic hand. If you try to use an electric motor to
open and close the hand, you must somehow know when to stop it. To do this, you can use

some kind of sensor as a feedback control system that tells your N X T the object has been
grabbed and the motor can be stopped. However, a pneumatic cylinder, in most cases, needs

no feedback. The air pressure closes the hand until it encounters enough resistance to stop it.

This approach works in a wide variety of objects (if your robot is designed to hold eggs,

make sure it exerts a very gentle pressure!). Figure 10.6 shows a simple pneumatic hand.You

see that we used a scissorlike setup that gives our hand a rather large range in regard to the

size of the things it can handle.

www.syngress.com

Getting Pumped: Pneumatics ~ Chapter 10 199

Figure 10.6 A Simple Pneumatic Hand

The pneumatic hand shown in Figures 10.7 and 10.8 opens even wider and closes even

tighter than the one shown in Figure 10.6. To achieve this wider range of motions we fixed
the cylinder so that it remains parallel to the long beams. The parts that enclose the cylinder
and keep it parallel to the beams are called cylinder brackets. They are designed mainly for
attaching two cylinders back-to-back to obtain a longer linear motion than what's possible
with a single cylinder, but it also works well as a way to prevent a cylinder from rotating.

Figure 10.7 A Better Pneumatic Hand (Open)

www.syngress.com

200 Chapter 10 �9 Getting Pumped: Pneumatics

Figure 10.8 A Better Pneumatic Hand (Closed)

The preceding example gives you an idea of what pneumatics can be used for. Likely,

you're already imagining other interesting applications. Unfortunately, the LEGO pneumatic

system was not designed to be electrically controlled, so to effectively use it in your robotic

projects you need an interface that allows your N X T to open and close valves. And unless

you plan to run behind your robot pumping like crazy, you probably want to provide it with

an automatic compressor.

Controlling the Airflow
Industrial pneumatic controllers usually operate valves using solenoids, which are electromag-

nets that can pull or push valves. LEGO has not released solenoids, but we can use a motor

to actuate a valve.

Figure 10.9 shows one of many possible solutions:The motor turns a 12t gear, which

turns a 40t gear. W h e n the 40t gear turns, it moves a beam that pulls or pushes the valve. We

exploit here the capability of the N X T motor to turn a specific angle. To move the valve

from the center position to either extreme, we turn the motor 180 degrees. To return to the

center, we turn the motor 180 degrees in the opposite direction.

www.syngress.com

Getting Pumped: Pneumatics �9 Chapter 10 201

Figure 10.9 An Electric Valve

This electric valve is not very compact, but there's not much more you can do consid-

ering the size of the motor. Just the same, it works well, and you may feel satisfied with it.

But could you make something better? Try applying some of the tricks you learned in pre-

vious chapters. For example, you know you can control more than one valve with a single

motor.You have seen that, using a differential, it's possible to separate the two turning direc-

tions of a motor on two different axles. N o w you only need to connect each axle to a valve

so that the valve cycles between its positions using only one turning direction.You can do

this using a liftarm as a connecting rod; like in old steam locomotives (see Figure 10.10). We

used a bent liftarm as a connecting rod because the distance between its extreme holes is

about 6.5 LEGO units, a fractional distance that cannot be achieved with a straight beam.

Figure 10.10 A Cycling Valve

www.syngress.com

202 Chapter 10 �9 Getting Pumped: Pneumatics

Figure 10.11 shows a prototype of a complete double-electric valve, which combines
two setups like those of Figure 10.10 with a motor and a differential gear. This mechanism
requires a lot of torque to be operated, but the N X T motor has enough torque to operate it
without additional gearing. The differential splits the power onto two 36t gears, each one
featuring a ratchet beam that lets it rotate only in a specific direction. Thus, when the motor
turns clockwise, one valve moves, and if it turns counterclockwise, the other does, each one
cycling between all positions.

As in Figure 10.9, the servo motor can move the valves accurately from one position to

another by turning a specific number of degrees. The fact that the N X T motors include

high-resolution encoders allows the motors to easily and precisely operate mechanisms that
require accuracy, like the pneumatic valves.

Figure 10.11 A Single-Motor Dual-Electric Valve

Building Air Compressors
Now that you have discovered a way to operate pneumatic cylinders from your NXT, the

next step is to provide them with a good supply of compressed air. Some applications

require only a small quantity of air for each motion, in which case you have the option to

preload a tank by pumping it manually before you run the robot. A good example is a robot
that blows out a candle: All it has to do is find the candle in the room, and then release its

air supply to blow it out.You can extend the range using more tanks, but for most practical

applications, you will need something more substantial: an unlimited source of compressed
air.

www.syngress.com

Getting Pumped: Pneumatics �9 Chapter 10 203

You can achieve this goal easily by building an electric compressor, such as the one
shown in Figure 10.12. The small pump is connected to an N X T motor and to an L-shaped

liftarm using frictionless pins. The liftarm is mounted directly onto the motor. This com-
pressor is probably the smallest you can build with the N X T motor. There are many possible
setups, but it's very important that you design yours to take advantage of the entire stroke of
the pump, because this will make it more efficient. In fact, if your compressor, for example,

uses half of the stroke of the pump, it will release only half the maximum quantity of air it

could potentially release. W h e n extended, the small pump is two LEGO units longer than

when it is retracted; the distance between opposing holes on the N X T motor's orange shaft

is two LEGO units. Thus, the geometry is pe r f ec t~ i f there is a motor position in which the

pump is fully retracted, when the motor rotates 180 degrees the pump is extended by

exactly two units to its full extension. The only remaining issue, which the L-shaped liftarm

takes care of, is to ensure that the pump is fully retracted at some motor position.

Figure 10.12 A Simple Compressor

A double-acting compressor uses two pumps to provide more airflow. While one of the

pumps is pumping, the other takes air, thus providing continuous airflow. Figure 10.13 shows

one design, which was inspired by Ralph Hempel's compressor (his used an older LEGO

motor). Three 24t gears are mounted on a beam, which is attached to the motor using a 2 x

4 L-shaped liftarm. The motor rotates the center gear, and two pumps are connected to the

outer gears. Note that the pumps are mounted such that when one is fully extended, the

other is completely retracted. This ensures that one of the pumps is supplying air almost all

the time.

204 Chapter 10 �9 Getting Pumped: Pneumatics

Figure 10.13 A Double-Acting Compressor

You can improve the compressor shown in Figure 10.13 in two ways. First, the N X T

motor does not turn very fast. The small LEGO pumps work well at high speed, so you can

increase the air supply by gearing up. Second, the distance between opposing holes on the
24t gears is smaller than two units, so the pumps do not supply all the air they can in each
stroke. The variant shown in Figure 10.14 fixes both problems. A 36t gear turns two smaller
12t gears, increasing the speed of the compressor by a factor of three. Also, the two thin 2 x
1 liftarms that push and pull the pumps provide the maximal stroke length (pairs of medium
pulleys will achieve exactly the same effect).

Figure 10.14 A More Powerful Double-Acting Compressor

www.syngress.com

Getting Pumped" Pneumatics �9 Chapter 10 205

You also can use the large pump to build compressors, but they will be less efficient and
bulkier than compressors that use the small pump. The compressor shown in Figure 10.15 is
inspired by a design by Christopher R. Smith. The large pump requires much more force to
operate, so it must be mounted securely in a stiff structure to avoid twisting. This is usually
achieved by using gears on both sides of the pump, as we have done here. If you remove the

spring, the compressor will run a bit more smoothly and the stroke can be longer, but the

compressor works even if you leave the spring in place.

Figure 10.15 A Compressor That Uses the Large Pump

The direction of turning is completely irrelevant t o compressors:You can always turn the

motor that operates the compressor in the same direction. This opens the possibility of oper-
ating a compressor and controlling a valve with a single servo motor. To do so, we would

replace one valve in the direction-separation mechanism shown in Figure 10.11 with a com-

pressor, such as the one shown in Figure 10.15. Because of the ratchets, the operation of the

compressor is somewhat noisy and inefficient (the motor needs not only compressed air, but

also to stretch the rubber bands, which perform no useful work when they shrink back).

Therefore, the large pump would work in this setup better than the small pump, because it

compresses more air in each stroke.

The nice thing about compressors is that they don't need to be wired to one of the pre-

cious output ports of your NXT: A battery box is enough to run them. If you use the N X T

motor with a battery box, you will need a converter cable, or you can use a battery box and

www.syngress.com

206 Chapter 10 �9 Getting Pumped: Pneumatics

some other LEGO motor.You can easily adapt the compressors shown in this chapter to use
the 1KC Buggy motor, and there are also good compressor designs for older LEGO motors.

But you might wonder when you should stop your compressor, and how. The simplest
option is not to stop it. Instead, you can place a torque-limiting component in the gearing,
such as a pulley or a clutch gear, so that when the pressure reaches a given level, the gearing

idles. Figure 10.6 shows a much more elegant solution. Rubber bands pull a cylinder in.

When the pressure builds up in the bot tom inlet of the cylinder, it pushes the cylinder out.

Eventually the cylinder presses the touch sensor. When pressure drops, the rubber bands pull

the cylinder back in, releasing the touch sensor. The N X T uses the input from the touch

sensor to start and stop the compressor. We have essentially constructed a simple pressure

sensor. By adjusting the number and strength of the rubber bands, you can set your pressure
switch for the desired pressure threshold. The mechanism shown in Figure 10.16 is loosely

based in a design by Ralph Hempel.
Another option is to use a genuine pressure sensor that uses a pressure-sensing electronic

chip. An N X T pressure sensor is available from Mindsensors, but we have also successfully

built homemade ones.

Figure 10.16 A Pressure Switch

Building a Pneumatic Engine
We mentioned before that you can make cylinders control other cylinders.You accomplish

this by making a cylinder operate the valve that controls a second cylinder. This is not useful

in itself, but you can make a cylinder do something and move a valve. A very interesting case
is one in which you connect two cylinders in a loop where each one controls the other,

resulting in an unstable system that continuously, and automatically, changes its state (see

Getting Pumped: Pneumatics �9 Chapter 10 207

Figure 10.17). Provided that you have a supply of compressed air, you can take advantage of
this feature to make your robot perform an action.

Figure 10.17 An Unstable Pneumatic System

Figure 10.18 shows a diagram of this pneumatic circuit. Cylinder 1 operates valve 1,
which controls cylinder 2, which operates valve 2, which controls cylinder 1!

Figure 10.18 Diagram of the Cyclic Pneumatic System

www.syngress.com

208 Chapter 10 �9 Getting Pumped: Pneumatics

Probably the first robot based on this system to appear publicly on the Internet was Bert
van Dam's pneumatic insect. Figure 10.19 shows our slightly modified replica.

Figure 10.19 Bert van Dam's Pneumatic Insect

The complicated tubing hides the same basic circuit shown in Figure 1 0 . 1 6 ~ o n e of the
control cylinders moves the three leg assemblies forward and backward, while the other

moves the legs up and down. These are made of six cylinders, split into two groups of three,
controlled by the same valve. Each group has a leg in a central position on one side, and one
leg front and one leg rear on the other side (see Figure 10.20).

Figure 10.20 Leg Connection Scheme for the Pneumatic Insect

www.syngress.com

Getting Pumped: Pneumatics �9 Chapter 10 209

Though rather complicated to build, and more academic an example than practical, van

Dam's insect is quite amazing to see in action.
When you use the same principle, it's possible to build a true pneumatic engine, where

the push of the cylinders is converted into rotary motion exactly like in steam engines.
Figure 10.21 shows our implementation of a LEGO pneumatic engine designed by C. S.
Soh (whose Web site contains a wealth of information on LEGO pneumatics, including fas-
cinating performance measurements of various compressors). The key points about this

engine are:

�9 Each cylinder has a dead point in its cycle, when it is either fully extended or
retracted. In this position, the cylinder is not able to perform any work, as its

push/pull force cannot be converted into rotary motion. This happens because the

two connection points of the cylinder (on the chassis and the wheel) and the ful-

crum of the wheel align along the same line. For this reason, a pneumatic engine

with a single cylinder would not work. The addition of a second cylinder solves the

problem:You must mount it with a difference of 90 degrees in its phase against the

first one, so when one reaches a dead point, the other is at midstroke.

�9 The phasing of the valves is very important:You must take care to position them
precisely; otherwise, your engine won't work. Mount the 36t gears on the axles in
such a way as to align one of their holes with the holes on the cams. Attach the lif-

tarms to that hole with a gray pin. Connect the tubing exactly as shown in Figure

10.21.

Figure 10.21 A Pneumatic Engine

www.syngress.com

210 Chapter 10 �9 Getting Pumped: Pneumatics

Pneumatic engines are capable of high torque, but due to their intrinsic friction they are
not suitable for high-speed applications. Most of the friction comes from the cylinders
themselves, which, in order to be airtight, are a bit stiff to move.

Generally speaking, a vehicle moved by this engine, and supplied by an onboard com-
pressor, is not very efficient. But it's indeed fun to see in action and might have its special
uses, t oo .

Summary
Beyond the fascinating sight of all those tubes, and the dramatic hissing of the air coming
out of the valves, pneumatics has its practical strong points. In this chapter, you reviewed
some basic concepts about the properties of gases, and learned how to exploit these when
building your robots. Cylinders are definitely a better choice than electric motors for per-
forming particular tasks and, most significantly, have the capability to grab objects and create
linear motion.

Electric compressors can provide a constant airflow to supply your cylinders, and can be
used to control this flow from the NXT. Unfortunately, interfacing pneumatics to the NXT
is not so simple, and requires a bulky assembly that includes an electric motor and some
gearing. Perhaps in the future, the LEGO Company will produce a smart and compact inter-
face capable of controlling many valves from a single output port.

Pneumatics also offers the opportunity to implement simple automation based on
cyclical operation, as we showed in the six-legged walker and with the pneumatic engine.

www.syngress.com

212 Chapter 11 ~ Finding and Grabbing Objects

Introduction
It's always great fun and very satisfying to see your robot pick things up from the ground, or
take an object when you offer it. In this chapter, we'll illustrate some ways to build arms,
hands, clamps, pliers, and other tools to grab and handle objects. One of the basic measure-
ments of movement we'll explore is the degree of freedom (DOF), or the number of directions
in which an object (such as a robotic arm) has a range of motion. In the last part of the

chapter, we'll show you methods by which your robot can find the objects, the most chal-
lenging part of the job, and distinguish among target objects (those you wish to pick) and
walls or other obstacles.

We divide the process of grabbing an object into four steps:

1. Find an object.

2. Distinguish target objects from walls, other obstacles, or "dummy" objects.

3. Position the grabber and/or object in correct orientation.

4. Operate the grabber to catch the object.

The order of these steps may vary, as sometimes your robot must capture the object
before it can distinguish between a "target" object and "dummy" objects (for example, by a

color sensor mounted on top of the grabber). We'll start from the last step which is more
technical, and then discuss the other steps which rely mainly on programming.

Operating Hands and Grabbers
In Chapter 10, we illustrated that pneumatic cylinders are generally the ideal choice for
making grabbing devices, or grabbers. We will explain the advantage of pneumatic grabbers in
more detail in the next section. Unfortunately, pneumatics is not always a possible option.
You might not have LEGO pneumatic parts or you don't have room on your robot to fit a
pneumatic compressor (a pressure switch and some motor-driven valve switches). We've seen
that NXT-to-pneumatics interfaces are rather cumbersome. We will defer the discussion of
pneumatic grabbers until after we explain how to use the N X T servo motors to drive your
grabber.

The problem with using motors is not in opening or closing the hand; it's in getting the

hand to apply continuous pressure on the object to prevent it from falling. This means you
cannot just position the fingers around it.You must also exert a force that tightens around

the object even though you are not moving the fingers anymore. If you are familiar with (or
still use with your NXT) the old electric motors of the P, CX, you probably know that

stalling them (having them powered but their movements blocked) could cause their internal

gears to wear and the motor to overheat. We have explained in Chapters 2 and 3 that the
new N X T servo motors are more robust and can withstand short-term stalling. They are,

www.syngress.com

Finding and Grabbing Objects , , Chapter 11 213

however, extremely power-hungry and would waste a lot of your batteries' power doing so.

Long-term stall may still heat up the servo motors, and although they have a protection
mechanism which will shut them down before they are damaged (dropping your object...),
overheating is still undesirable. When you know you're going to handle a soft object that has
some intrinsic elasticity, you can sometimes simply brake the motor, which can, combined
with friction among gears, keep the fingers against the object. Try this with TriBot and a
sponge ball! If you have heavier objects, however, you will need to find ways to reduce the
power forcing the fingers to open. Again, using the TriBot example, try catching the N X T
plastic ball.You will not be able to do this without constantly powering the motor, forcing it

to close the claws on the ball. A simple way to overcome this problem is to use a worm gear.
The simple grabber in Figure 11.1 uses a worm gear that drives the fingers. The worm gear

prevents them from releasing the ball when the motor is not powered (either in "brake" or
in "coast" mode). Recall from Chapter 2 that the worm gear is a one-way gear: It can turn a

meshing gear but cannot be turned by it.

Figure 11.1 A Simple Hand-Operated Grabber with a Worm Gear

Figure 11.2 shows a different design, where the rotary motion from the motor gets con-

verted into linear motion through a worm gear and two translating axles. It's this motion
that operates the movable fingers of the grabber. The translation of rotary motion to linear
motion is performed by the two half-bushings with mesh the teeth of the worm gear; when

214 Chapter 11 �9 Finding and Grabbing Objects

the worm gear rotates, the bushings get pushed or pulled, and the axles where they are
mounted move accordingly.

Figure 11.2 This Hand Uses Linear Motion

The same principle is used also in the grabber shown in Figure 11.3. Here only the two

cone-toed fingers move, with a very compact worm gear pushing them to close on the third
finger.

Figure 11.3 A Compact Grabber with a Worm Gear

www.syngress.com

Finding and Grabbing Objects �9 Chapter 11 215

We've repeatedly said that pneumatic cylinders are your best choice in this field, but let's
analyze what makes them so good to see whether we can learn something and replicate the
same behavior. A pneumatic cylinder can be considered a two-state system: The cylinder is
either extended or retracted (we are deliberately ignoring that you can somehow manually
stop the cylinder in an intermediate position, centering the switch, and assuming that the
switch is in one of its extreme positions). If something prevents the cylinder from actually
reaching one of these states, it can, however, continue to push in that direction. Its natural
behavior is to move until it finds resistance that balances its inner pressure. This pressure is

what keeps the fingers applying a force to the object, thus making your robotic hand hold it

firmly.

The point now is to replicate this behavior in a nonpneumatic device. Is it possible? Yes.

Figure 11.4 shows an example of a simple hi-stable system, so-called because it has two

default states, or two possible rest positions to which it tends to go. A rubber band forces the

liftarm to stay against one of the two black pegs, either in A or in B. If you move the liftarm
slightly from the peg and then release it, it goes back against the peg. If you move it a bit
more and pass the midpoint between A and B, it goes to the other peg.You need to provide
only enough force to make the system switch from one to the other; the rubber band will
do the rest.

Figure 11.4 A Simple Bi-Stable Mechanism

Applying this principle, you can design the pliers shown in Figure 11.5, which are suit-

able for grabbing very small objects such as a 1 x 2 brick (seen at the bot tom of the figure).

www.syngress.com

216 Chapter 11 ~ Finding and Grabbing Objects

To actually use them in a robot you must add a motor that, through brief impulses, rotates

the axle connected to the liftarm, shifting the pliers into their open or closed state.

Figure 11.5 Bi-Stable Pliers

The same approach can be used for larger hands. In Figure 11.6, we demonstrate how

one can make a TriBot-like grabber which uses a bi-stable mechanism. Here the rubber

band between the two hands keeps them forcing on the object in the closed state, while you

can still open the hand with the motor (low power with speed regulation works best for this

design), and the rubber band keeps it open afterward.

Finding and Grabbing Objects �9 Chapter 11 217

Figure 11.6 A TriBot-like Bi-Stable Hand

What if you need a compact, lightweight grabber? The flex system we briefly described

in Chapter 9 allows you to transfer motion to distant parts, away from the motors and gears.
Figure 11.7 shows a small operating hand based on this technique. A pair of opposing rubber
bands introduces a degree of elasticity into the system, and helps the fingers return to their
default setting once the hand comes to rest in its open position.

Figure 11.7 The Flex System Helps in Making Lightweight Hands

www.syngress.com

218 Chapter 11 �9 Finding and Grabbing Objects

Try to use short fingers whenever possible. An object held by long fingers
exerts more torque on the gears, just as a long lever makes lifting a heavy
weight easier.

Using Pneumatics to Drive Your Grabber
In discussing the advantages of pneumatics when grabbing objects, we must also mention
that tubing provides a simple way to keep bulky things far from the movable parts. Compare
the simplicity of the pliers in Figure 11.8 with the complex gearings of the previous exam-
ples. The difference is dramatic.

Figure 11.8 Pneumatics Helps in Making Essential and Clean Assemblies

Pneumatics makes it possible to build more versatile hands than gear-driven grabbers.
Figure 11.9 shows a three-joint pneumatic finger. This is a nice design, but it's a pity that it
requires all three ports of your NXT to be fully controlled. How could you control more
than a finger if you are already out of ports? To make the system simpler, though still useful,
you can connect all the cylinders together (you won't be able to move a single segment of
the finger by itself, but the finger can still adapt well to the shape of many different objects).
This is the technique we used in the three-finger pneumatic hand shown in Figures 11.10
and 11.11, which is controlled by a single valve switch.

www.syngress.com

Finding and Grabbing Objects �9 Chapter 11 219

Figure 11.9 A Three-Degrees-of-Freedom Pneumatic Finger

Figure 11.10 A Three-Finger Pneumatic Hand

www.syngress.com

220 Chapter 11 �9 Finding and Grabbing Objects

Figure 11.11 The Three-Finger Pneumatic Hand with Complete Tubing

www.syngress.com
Continued

Finding and Grabbing Objects �9 Chapter 11 221

w w w . s y n g r e s s . c o m

222 Chapter 11 �9 Finding and Grabbing Objects

Figure 11.12 A Two-DOF Robotic Arm

Finding Objects
Building robotic arms and hands is the easy part of the job. The hardest part is finding the
objects to grab. We will skip the case where your robot knows the position of the objects,
because this brings into play a general navigation problem we'll discuss in Chapter 13. So,
for the time being, we'll stick with the fact that the robot knows nothing about the location
of the objects.

As we explained when talking about bumpers in Chapter 4, navigation in real environ-
ments is quite a tough task, and distinguishing a specific object from others makes things
much harder. So the second assumption we make here is that you know what kind of object
you're expected to handle, as well as all the details of the environment where your robot
moves (typically an artificial one prepared for the task).You might think that we are intro-
ducing too many simplifications here, but even in these conditions, the task remains quite
hard. It's very important that you progress in short steps. The most common mistake of
beginning builders is to start out with goals too difficult for their robots, where mechanical
and programming difficulties add to navigation problems. As a general approach, we suggest
you apply the "divide and conquer" strategy and solve the problems one by one.

www.syngress.com

Finding and Grabbing Objects, Chapter 11 223

Let's make an example: a simple variation on line following that might involve removing

objects placed along the path. A very simple bumper is probably enough to detect objects.

The arm will be more or less sophisticated depending on whether you have to collect them
or just move them out of the way.

In wider environments, things become trickier. Imagine you have to find things in a

delimited space with no walls (how could a space be delimited without having walls? By

using different colors on the floor and reading them with a light sensor facing down?).You

can still use a bumper, and make your robot move around at random or follow some kind of

scheme. Depending on whether you are participating in a contest with specific rules, you

could make this approach more efficient using a sort of funnel to convey the objects against

the bumper, or some long antennas (connected to a touch sensor) to help you detect objects
in a wider area.

If the objects in your environment are large enough, you can use the ultrasonic (US)

sensor to find them. Figure 11.13 shows a modified TriBot that uses ultrasound to find soda

cans and plastic cups. There are several important issues to remember when using ultrasound:

�9 It works well for relatively large, solid objects with more or less flat surfaces. This is

due to the nature of ultrasonic sound wa v e s ~ t h e y do not reflect back (or are

attenuated drastically) from round or spongy surfaces. An alternative can be the

Mindsensors IlK distance sensor, which is relatively unaffected by the object's com-

position and shape.

�9 Putting the US sensor too high can cause your robot to lose track of the object

when it gets closer. Putting it too low can lead the sensor to receive echoes from

ground reflections, thereby confusing the measurement.

�9 The ultrasound beam is about 30 degrees wide. This means that even a "point"

object such as a standing marker would seems to occupy 30 degrees around your

NXT. This also means that your robot may be facing an object farther away, but

because there is a closer object a little to its left (or right), it will see this one
instead.

�9 Approaching a flat surface in an oblique angle may result in a weird US readout,

basically due to weak reflection back toward the sensor (most of the sound is

reflected away from the sensor, just like the reflection of a flashlight from a mirror).

�9 Using more than one US sensor in a room (say, in a competition) may be problem-

atic, as the sensor cannot distinguish between its own generated waves and other

sensors' ultrasound waves. It is possible to synchronize US sensors (as we discuss

later on), but this requires cooperation with your opponents . . .

www.syngress.com

224 Chapter 11 �9 Finding and Grabbing Objects

Figure 11.13 The NXT CanFinder

How can you cover the whole space while searching with a US sensor? One way is to
perform a 360-degree scan (typically by rotating the whole robot), looking for anything
within, say, 30 inches. If you find something, go toward it one-half its distance; if not, pick a

random direction and move 15 inches (half the target threshold distance). Repeating this

basic step will give you good coverage of the area around you. Of course, you can improve

on this simple scheme by remembering your previous "step," and so on.

You can use other sensors to help you find your target. For example, if your target

emits light (which is strong enough to be detected from a distance, or alternatively you dim

the lights in the room) or makes a sound, you can use the light or sound sensor to locate

the target. A good practice in such cases is to have your robot move some distance, stop,
rotate 360 degrees while measuring the l ight/sound level and keeping a record of the

Finding and Grabbing Objects �9 Chapter 11 225

motor encoder value of the largest level, and then rotate to the orientation of maximal
intensity and move some fixed distance again. Kepeating this procedure again and again
will finally lead you close to your target. If the target blinks or makes a nonconstant sound

(like another N X T playing music), you can use two identical sensors separated a few inches
apart and use the difference between them to decide whether the target is to the left or to
the right, similar to how your own ears identify the direction of noises. Another, more spe-
cific, example is the IKSeeker sensor from HiTechnic, aimed at locating the IK-emitting

Junior Cup ball. This sensor gives a 1-9 value telling the N X T in which sector (out of 240
degrees) the ball is, and another 1-9 value giving the signal strength (corresponding to the
distance to the ball).

Positioning the Grabber
If you did the NXT-G Kobo Center TriBot missions, you might have noticed that placing
the ball not directly in front of the TriBot will sometimes cause the grabber to fail to catch
it. This demonstrates another important issue in grabbing objects: aligning the grabber and

the object so that the object can be caught by it (i.e., the object must be within the operating
envelope of the grabber, as we discussed earlier).

The easiest way, of course, is to force the object to reach the grabber.You can do this, for
instance, by having a "funnel"-like construction in front of your robot so that the object is
pushed to a defined position where the grabber catches it. However, you can do this only
for relatively small objects. Another approach is to adjust your robot orientation and position
to have the grabber in the right place relative to the object.

Consider the example we gave earlier of an N X T using US to find its target. Once the

robot is relatively close to the target, we can use a more accurate distance measurement
during the US scan to pinpoint the object's direction.The CanFinder shown in Figure
11.13, for example, used a sophisticated procedure of this sort. It scanned clockwise over the
object, and whenever the distance was smaller than the previous minimal distance found, it
reset a motor encoder. If the distance was the same as the previous distance, it stored in
memory the current encoder value (let's call this variable A). After the scan was complete, it
rotated counterclockwise the final encoder value minus A, and then rotated counterclock-
wise A / 2 degrees. This placed the robot pointing directly toward the can.

Another alternative is to use a short-range sensor to check whether the object is posi-

tioned correctly. For example, you can put a light sensor near your robot's hands in such a

way that you'll get a signal only when an object is at the right position.

Distinguishing Objects and Obstacles
Another important problem is distinguishing between "target" objects and "dummy" objects,
and between objects and other obstacles such as chairs, walls, and so forth. The former is

typically performed by some sort of sensor~a light sensor or HiTechnic color sensor, for

www.syngress.com

226 Chapter 11 �9 Finding and Grabbing Objects

example. The latter, however, is more difficult. As we already discussed, you typically wish to

test your robots in a well-defined environment (divide and conquer, remember?). However,

walls are hard to avoid, even in the most controlled conditions. H o w can you tell whether

you found an object or hit the wall? Well, here are a few possible tricks:

�9 Try moving it. If it's a wall, it won' t move.You can check whether you've moved it

by moni tor ing the motor encoders.

�9 If you are using a US sensor, scan clockwise over the "object." Reset the encoder

once you "see" the object, and keep track of the encoder value once you pass it to

the other side. The difference between these two values (or better yet, the differ-

ence divided by the minimal distance to the object) can be compared to a

threshold you find to distinguish your object and other (typically larger) obstacles.

�9 Usually the walls are taller than the soda cans or marbles you have to find, so you

can prepare two bumpers at different heights and see which one closes to decide

what your robot ran into.

�9 You can add a second US sensor above the object's expected height, or pointing

upward at an angle (just remember that oblique angles are troublesome). Using two

US sensors on a single N X T requires a little custom programming to ensure that

they do not send sound waves together. Fortunately, the LEGO US sensors have

two modes: a continuous mode (the default used by N X T - G and Robo tC) and a

single-shot mode in which it sends a "ping" of sound only by command. Using the

single-shot mode you can alternate between two US sensors, pinging each one in

turn. The following R o b o t C code displays two US readouts on the N X T LCD:

void InitializeSonar(tSensors nPort) {

static const byte kSonarInitialize[] : {3, 0x02, 0x41, 0x01};

SensorType [nPort] = sensorI2CCustomStd9V;

sendI2CMsg(nPort, kSonarInitialize[0] , 0) ;

waitl0Msec(5) ;

void PingSonar(tSensors nPort) {

static const byte kSonarPing[]

static const byte kSonarRead[]

const int nSonarReplySize = i;

= {3, 0x02, 0x41,

: {2, 0x02, 0x42};

0x01};

byte replyMsg[l] ;

sendI2CMsg(nPort, kSonarPing[0] , 0) ;

www.syngress.com

Finding and Grabbing Objects �9 Chapter 11 227

waitlMsec(10); // wait 10ms, enough for echoes to return to sensor.

nI2CBytesReady[nPort] = 0; // Clear any pending bytes

sendI2CMsg(nPort, kSonarRead[0] , nSonarReplySize) ;

while (nI2CStatus [nPort] ==STAT COMM PENDING)

waitlMsec(2) ; // Wait till I2C communication ends

readI2CReply(nPort, replyMsg[0] , nSonarReplySize) ;

SensorValue[nPort] = replyMsg[0] ;

const tSensors kUSI : $4;

const tSensors kUS2 = $3;

task main() {

InitializeSonar (kUSl) ;

InitializeSonar (kUS2) ;

while (true) {

PingSonar (kUSl) ;

PingSonar (kUS2) ;

nxtDisplayTextLine(2, "US1- %d", SensorValue[kUSl]) ;

nxtDisplayTextLine(7, "US2- %d", SensorValue [kUS2]) ;

waitlMsec(50) ;

}
return ;

}

A different case is when you want to manually trigger your robot to grab or release

objects. This is very easy to implement with a touch sensor, a push button that you press

when you want your robot to open or close its hand. US detection makes your robot even

more impressive to see in action:You can, for instance, build a robot that navigates the room,

and that, when you offer it an object, stops to grab it. This technique is a bit tricky to use if

your robot is expected to navigate a room with walls and other obstacles, because it won't

be able to tell what triggered its distance detection. One way to overcome this is to continu-

ously monitor the distance and interpret a sudden radical change in its movement as a

request to grab or release objects.

228 Chapter 11 �9 Finding and Grabbing Objects

Summary
Designing a good robotic hand or arm is more of an art than a technique. There are indeed
technical issues when it comes to gearing and pneumatics that you must know and consider
to successfully position the grabbers or hands, apply the right amount of pressure, trou-
bleshoot the elasticity of the object to be grabbed, and not allow your robot to drop the ball
(or object, rather). Even then, there's still a lot of space for good intuitions and heavy proto-

typing.You can choose pneumatic or nonpneumatic approaches, design for different degrees

of freedom in your gripping arm, use a flex system with tubing for lightweight designs, and

create solutions that reserve ports for additional functions.
To make an easy start, target your first projects toward a specific type of object, and then

progress to more versatile grabbers only when you feel experienced and confident enough

to meet the challenge.
We also explained that finding the object is the hardest part of the job, but there are

cases where you can use a random search pattern, or where the object sits on the robot's

path, as in the line-following example. We discussed the pros and cons of using the ultra-

sonic sensor for finding objects, as well as other techniques such as sound and light. Finally,
we discussed how to distinguish real objects and other obstacles your robot may encounter.

Chapter 12

Doing the Math

S o l u t i o n s in t h i s c h a p t e r :

�9 Multiplying and Dividing

�9 Averaging Data

�9 Using Interpolation

�9 Understanding Hysteresis

�9 Higher Math

229

230 Chapter 12 �9 Doing the Math

Introduction
You may be surprised to find a chapter about mathematics in a book aimed at explaining
building techniques. However, just as we can't put programming aside totally, so too we
cannot neglect an introduction to some basic mathematical techniques. As we've explained,
robotics involves many different disciplines, and it's almost impossible to design a robot
without considering its programming issues together with the mechanical aspects. For this

reason, some of the projects we are going to describe in this book include sample code, and

we want to provide here the basic foundations for the math you will find in that code. Don't

worry' the math we'll discuss in this chapter doesn't require anything more sophisticated
than the four basic operations of adding, subtracting, multiplying, and dividing.The first sec-
tion, about multiplying and dividing, explains in brief how computers deal with integer

numbers, focusing on the N X T in particular. This topic is very important, because if you are
not familiar with the logic behind computer math, you are bound to run into some

unwanted results, which will make your robot behave in unexpected ways.
The three subsequent sections deal with averages, interpolation, and hysteresis, and a fourth

explains strategies to deal with more complex calculations. Though averages, interpolation,

and hysteresis are not essential, you should consider learning these basic mathematical tech-

niques, because they can make your robot more effective while at the same time keep its
programming code simpler. Averages cover those cases where you want a single number to

represent a sequence of values. School grades are a good example of this: They are often
averaged to express the results of students with a single value (as in a grade point average).
Robotics can benefit from averages on many occasions, especially those situations where you
don't want to put too much importance on a single reading from a sensor, but rather

observe the tendency shown by a group of spaced readings.
Interpolation deals with the estimating, in numerical terms, the value of an unknown

quantity that lies between two known values. Everyday life is full of practical examples
when the minute hand on your watch is between the three and four marks, you interpolate
that data and deduce that it means, let's say, 18 minutes. When a car's gas gauge reads half a
tank, and you know that with the full tank the car can cover about 400 miles, you make the
assessment that the car can currently travel approximately 200 miles before needing refu-
eling. Similarly in robotics, you will benefit from interpolation when you want to estimate
the time you have to operate a motor in order to set a mechanism in a specific position, or

when you want to interpret readings from a sensor that fall between values corresponding to

known situations.

The last tool we are going to explore is hysteresis. Hysteresis defines the property of a

variable for which its transition from state A to state B follows different rules than its transi-

tion from state B to state A. Hysteresis is also a programmed behavior in many automatic

control devices because it can improve the efficiency of the system, and it's this facet that

interests us. Think of hysteresis as being similar to the word tolerance, describing, in other

Doing the Math �9 Chapter 12 231

words, the amount of fluctuation you allow your system before undertaking a corrective
action. The hysteresis section of the chapter will explain how and why you might add hys-

teresis to the behavior of your robots.
If your robot requires more complex calculations, two simple strategies can simplify the

task. The first strategy is to use a type of arithmetic that can represent fractional numbers,
not only integers. The second is to rely on existing building blocks from which you can

construct more complex calculations, such as NXT-G blocks and Robo tC functions that

compute trigonometric functions, square roots, and so on.

Multiplying and Dividing
If you are not an experienced programmer, first of all we want to warn you that in the

world of computers, mathematics may be a bit different from what you've been taught in

school, and some expressions may not result in what you expect. The math you need to

know to program the small N X T is no exception.
Computers are generally very good at dealing with integer numbers, that is, whole num-

bers (1, 2, 3...) with the addition of zero and negative whole numbers. In Chapter 7, we

introduced variables, and explained that variables are like boxes aimed at containing numbers.

An integer variable is a variable that can contain an integer number. What we didn't say in
Chapter 7 is that variables put limits on the size of the numbers you can store in them, the

same way that real boxes can contain only objects that fit inside.You must know and respect

these limits; otherwise, your calculations will lead to unexpected results. If you try to pour
more water in a glass than what it can contain, the exceeding water will overflow. The same

happens to variables if you try to assign them a number that is greater than their capaci ty~

the variable will retain only a part of it.
NXT-G manipulates integer numbers in the range-2,147,483,648 through

2,147,483,647 (a little more than 2 billion). Robo tC gives you more options. In the pro-

gram fragment that follows, the variables a, b, and c can store any integer between
-2,147,483,648 and 2,147,483,647 Oust like NXT-G numbers). The variables x, y, and z can

store only integers be tween-32 ,768 and 32,767.The type of the variable determines the
range of numbers that it can store: Long variables can store values between-2,147,483,648

and 2,147,483,647, but short variables can store only values between -32,768 and 32,767.

long a,b,c;

short x,y,z-

Why would you declare variables that can represent only a small range of values?

Because they use less memory, so there is room for more of them. Usually, there is no need

to worry too much about which number type is best: Long is often a good choice because it

provides a large range of numbers and because the N X T has plenty of memory for storing
numbers. If your program uses very large arrays that never need to store values greater than

232 Chapter 12 �9 Doing the Math

32,767 or less than-32,768, you should declare them as short. RobotC even supports

floating-point numbers, which can store fractional values, such as 3.14; we discuss these later

in this chapter.
Whatever number type you choose, you must keep the results of your calculations inside

the range of the type. This rule applies also to any intermediate result, and entails that you

learn to be in control of your mathematics. If your numbers are outside this range, your cal-

culations will return incorrect results and your robot will not perform as expected; in tech-

nical terms, this means you must know the domain of the numbers you are going to use.

Multiplication and division, for different reasons, are the most likely to give you trouble.
Let's explain this statement with an example.You build a robot that mounts wheels with

a circumference of 231mm. Attached to one wheel is a sensor geared to count 105 ticks per

each turn of the wheel. Knowing that the sensor reads a count of 385, you want to compute

the covered distance. Recall from Chapter 4 that the distance results from the circumference

of the wheel multiplied by the number of counts and divided by the counts per turn:

231 x 385 / 105 = 847

This simple expression has obviously only one proper result: 847. But if you try to com-

pute it in RobotC using short variables, you will find you cannot get that result. If you per-

form the multiplication first, that is, if the expression were written as follows:

(231 X 385) / 105

you get 222! If you try to change the order of the operations this way:

231 X (385 / 105)

you get 693, which is closer but still wrong! What happened? In the first case, the result of

performing the multiplication first (88,935) was outside the upper limit of the allowed
range, which is only 32,767. The N X T couldn't handle it properly and this led to an unex-

pected result. In the second case, in performing the division operation first, you faced a dif-

ferent problem: The N X T handles only integers, which cannot represent fractions or decimal
numbers; the result of 385 / 105 should have been 3 2/3, or 3.66666..., but the processor
truncated it to 3 and this explains the result you got.

Unfortunately, there is no general solution to this problem. A dedicated branch of math-

ematics, called numerical analysis, studies how to limit the side effects of mathematical opera-

tions on computers and quantify the expected errors and their propagation along

calculations. Numerical analysis teaches that the same error can be expressed in two ways:

absolute errors and relative errors. An absolute error is simply the difference between the result

you get and the true value. For example, 4355 / 4 should result in 1,088.75; the N X T trun-

cates it to 1,088, and the absolute error is 1,088.75 - 1,088 = 0.75. The division of 7 by 4

leads to the same absolute error: The right result is 1.75, it gets truncated to 1, and the abso-
lute error is again 0.75. To express an error in a relative way, you divide the absolute error by

Doing the Math �9 Chapter 12 233

the number to which it refers. Usually, relative errors get converted into percentage errors by
multiplying them by 100. The percentage errors of our previous examples are quite different
one from the other: 0.07 percent for the first one (0.75 / 1,088.75 x 100) and an impressive
42.85 percent error for the latter (0.75 / 1.75 x 100)! Here are some useful tips to
remember from this complex study:

�9 You have seen that integer division will result in a certain loss of precision when

decimals get truncated. Generally speaking, you should perform divisions as the last
step of an expression. Thus, the form (A x B) / C is better than A x (B / C), and (A
+ B) / C is better than its equivalent, A / C + B / C.

�9 Although integer divisions lead to small but predictable errors, operations that go

off-range (called ove~'tows and unde~ows) result in gross mistakes (as you discovered
in the example where we multiplied 231 by 385).You must avoid them at all costs.

We said that the form (A x B) / C is better than A x (B / C), but only if you're sure

A x B doesn't overflow the established range! If you use NXT-G or if you declare

your variables in Robo tC as long (like we declared a, b, and c earlier), overflows and
underflows are not very likely to occur. If you declare your R o b o t C variables as
short to save memory, beware of over/underflows.

�9 When dividing, the larger the dividend over the divisor, the smaller the relative

error.This is another reason that (A x B) / C is better than A x (B / C): The first
multiplication makes the dividend bigger.

�9 Fixed-point and floating-point numbers, which we cover later in the chapter, can

help you avoid loss of accuracy at the cost of slower computational speed.

Averaging Data
In some situations, you may prefer that your robot base its decisions not on a single sensor
reading, but on a group of them, to achieve more stable behavior. For example, if your robot
has to navigate a pad composed of colored areas rather than just black and white, you would
want it to change its route only when it finds a different color, ignoring transition areas

between two adjacent colors (or even dirt particles that could be "read" by accident).

Another case is when you want to measure ambient light, ignoring strong lights and

shadows. Averaging provides a simple way to solve these problems.

Simple Averages
You're probably already familiar with the simple average, the result of adding two or more

values and dividing the sum by the number of addends. Let's say you read three consecutive
light values of 65, 68, and 59. Their simple average would be:

www.syngress.com

234 Chapter 12 �9 Doing the Math

(65 + 68 + 59) / 3 = 64

which is expressed in the following formula:

A = (V 1 + V 2 +... + V n) / n

The main property of the average, what actually makes it useful to our purpose, is that it

smoothes single peak values. The larger the amount of data averaged, the smaller the effect of

a single value on its result. Look at the following sequence:

60, 61, 59, 58, 60, 62, 61, 75

The first seven values fall in the range of 58 to 62, and the eighth one stands out with a

75. The simple average of this series is 62; thus, you see that this last reading doesn't have a

strong influence (see Figure 12.1).

Figure 12.1 How Averaging Smoothes Peaks and Valleys in the Data

In your practical applications, you won' t average all the readings of a sensor, usually just

the last n ones. It is like saying you want to benefit from the smoothing property of an

average, but you want to consider only more recent data because older readings are no

longer relevant.
Every time you read a new value, you discard the oldest one with a technique called the

moving, average. It's also known as the boxcar average. Comput ing a moving average in a pro-

gram requires you to keep all the last n values stored in variables, and then properly initialize

them before the actual execution begins. Think of a sequence of sensor values in a long line.

Your "boxcar" is another piece of paper with a rectangular cutout in it, and you can see

exactly n consecutive values at any one time. As you move the boxcar along the line of

sensor values, you average the readings you see in the cutout. It is clear that as you move the

boxcar by one value from left to right along the line, the leftmost value drops off and the

rightmost value can be added to the total for the average.

Going back to the series from our previous example, we'll now show you how to build

a moving average for three values.You need the first three numbers to start: 60, 61, and 59.

Their average is (60 + 61 + 59) / 3 = 60. W h e n you receive a new value from your sensor,

Doing the Math �9 Chapter 12 235

you discard the oldest one (60) and add the newest (58).The average now becomes (61 + 59
+ 58) / 3 - 59.333... Figure 12.2 shows what happens to the moving average for three

values applied to all the values of the example.

Figure 12.2 A Moving Average for Three Values

When raw data shows a trend, moving averages acknowledge this trend with a "lag." If

the data increases, the average will increase as well, but at a slower pace. The higher the
number of values used to compile the average, the longer the lag. Suppose you want to use a

moving average for three values in a program.Your 1KobotC code could be as follows:

long ave, vl, v2, v3;

v2 = SensorValue [SI] ;

v3 = SensorValue [SI] ;

while

{
(true)

vl = v2 ;

v2 = v3 ;

v3 = SensorValue [SI] ;

ave = (vl+v2+v3) / 3;

// other instructions...

Note the mechanism in this code that drops the oldest value (v 1), replacing it with the

subsequent one (v2), and that shifts all the values until the last one is replaced with a flesh

reading from the sensor (in v3). The average can be computed through a series of additions

and a division.
When the number of readings being averaged is large, you can make your code more

efficient using arrays, adopting a trick to improve the computation time and keep the

236 Chapter 12 �9 Doing the Math

number of operations to a minimum. If you followed the description of the boxcar cutout as
it moved along the line, you would realize that the total of the values being averaged did not
have to be calculated every time. We just need to subtract the leftmost value, and add the
rightmost value to get the new total!

A circular pointer, for example, can be used to address a single element of the array to
substitute, without shifting all the others down. The number of additions, meanwhile, can be

drastically decreased, keeping the total in a variable, subtracting the value that "exits," and

adding the entering one. The following Robo tC code provides an example of how you can

implement this technique:

const short SIZE = 3;

long v[SIZE] ;

long i,sum, ave;

// initialize the array

sum = 0 ;

for (i=0;i<SIZE-l;i++)

{
v[i] = SensorValue[Sl] ;

sum += vii];

}

// first element to assign is the last of the array

i=SIZE-I;

v[i] =0;

// compute moving average

while (true)

{

sum -= viii; //

v[i] = SensorValue[Sl] ;

sum += v[i];

ave = sum / SIZE;

i = (i+l) % SIZE;

// other instructions...

The constant SIZE defines the number of values you want to use in your moving

average. In this example, it is set to 3, but you can change it to a different number. The state-

ments that start with long declare the variables; v[SIZE] means that the variable v is an array,
a container with multiple "boxes" rather than a single "box." Each element of the array works

Doing the Math �9 Chapter 12 237

exactly like a simple variable, and can be addressed specifying its position in the array. Array
elements are numbered starting from 0; thus, in an array with three elements they are num-
bered 0, 1, and 2. For example, the second element of the array v is v[1].

This program starts initializing the array with readings from the sensor. It uses the for
control statement to loop SIZE-1 times, at the same time incrementing the i variable from 0
to SIZE-1 . Inside the loop, you assign readings from the sensor to the first SIZE-1 elements

of the array. At the same time, you add those values to the sum variable. Supposing that the

first readings are 72 and 74; after initialization, viOl contains 72, v[1] contains 74, and sum

contains 146. The initialization process ends assigning to the variable i the number of the

first array element to replace, which corresponds to SIZE-1 , which is 2 in our example.

Let's see what happens inside the loop that computes the moving average. Before reading
a new value from the sensor, we remove the oldest value from sum. The first time i is 2 and

v[i], that is v[2], is 0; thus, sum remains unchanged, viii receives a new reading from the
sensor and this is added to sum, too. Supposing it is 75, sum now contains 146 + 75 = 221.

N o w you can compute the average ave, which results in 221 / 3 = 73.666.. . , and which is

truncated to 73. The following instruction prepares the pointer i to the address of the next

element that will be replaced. The symbol % in R.obotC corresponds to the modulo oper-

ator, which returns the remainder of the division. This is what we call a circular pointer,

because the expression keeps the value of i in the range from 0 to SIZE-1 . It is equivalent to
the code:

i = i+l ;

if (i==SIZE) i=O;

which resets i to 0 when it reaches the upper bound. The resulting effect is that i cycles
among the values 0, 1, and 2.

Dur ing the second loop i is 0, so sum gets decreased to v[O], that is 72, and counts 221 -

72 = 149. v[O] is now assigned a new read ing~for example, 7 3 ~ a n d sum becomes equal to
149 + 73 = 222. The average results 222 / 3 = 74, and i is incremented to 1. Then the cycle
starts again, and it's time for v[1] to be replaced with a new value.

This program is definitely much more complicated than the previous one, but it has the
advantage of being more general: It can compute moving averages for any number of values
by just changing the S I Z E constant.

Weighted Averages
We explained that simple averages have the property of smoothing peaks and valleys in your

data. Sometimes, though, you want to smooth data to reduce the effect of single readings, yet

at the same time put more importance on recent values than on older ones. In fact, the

more recent the data, the more representative the possible trend in the readings.

Let's suppose your robot is navigating a black-and-white pad, and that it's crossing the

border between the two areas. The last three readings of its light sensor are 60, 62, and 67,

www.syngress.com

238 Chapter 12 �9 Doing the Math

which result in a simple average of 63. Can you tell the difference between that situation
and one in which the readings are 66, 64, and 59 using just the simple average? You can't,
because both series have the same average. However, there's an evident diversity between the
two cases~in the first, the readings are increasing, and in the second, they are decreasing but

the simple average cannot separate them. In this case, you need a weighted average, that is, an
average where the single values get multiplied by a factor that represents their importance.

The general formula is:

A = (V 1 x W 1 + V 2 x W 2 + ... + V n x W n) / (W 1 + W 2 + ... + W n)

Suppose you want to give a weight of 1 to the oldest of three readings, 2 to the middle,
and 4 to the latest one. Let's apply the formula to the series of our example:

(6 0 x l + 6 2 x 2 + 6 7 x 4) / (1 + 2 + 4) = 6 4 . 5 7

(6 6 x 1 + 6 4 x 2 + 5 9 x 4) / (1 + 2 + 4) = 6 1 . 4 3

You notice that the results are very different in the two cases: The weighted average

reflects the trend of the data. For this reason, weighted averages seem ideal in many cases:

They allow you to balance multiple readings, at the same time taking more recent ones into

greater consideration. Unfortunately, they are memory-intensive and t ime-consuming when

computed by a program, especially when you want to use a large number of values.
Now, there is a particular class of weighted averages that can be of help, providing a

simple and efficient way of storing historical readings and calculating new values. They rely
on a method called exponential smoothing (don't let the name frighten you!).

The trick is simple:You take the new reading and the previous average value, and com-

bine these into a new average value using two weights that together represent 100 percent.

For example, you can take 40 percent of the new reading and 60 percent of the previous
average, or instead take only 10 percent of the new reading and 90 percent of the previous
average. The less weight you put on the new value, the more stable and slow to change the
average will be.

The general equation for exponential smoothing is expressed as follows:

A n = (v n x w 1 + A n _ l x w 2) / (W I + w 2)

You can choose W1 and W2 to add to 100 so that you can easily read them as a per-
centage. For example:

A n - (V n x 2 0 + A n _ l x 8 0) /100

Let's apply this formula to the series of the previous example. The first number in the

first series was 60. There is no previous value for the average, so we simply take this number:

A 1 =60

When the next reading (62) arrives, you compute a new value for the average using the
whole formula:

www.syngress.com

Doing the Math �9 Chapter 12 239

A 2 = (62 x 20 + 60 x 80) / 100 = 60 .4

Then you apply the rule again for the third value:

A 3 = (6 7 x 2 0 + 6 0 . 4 x 8 0) / 1 0 0 = 6 1 . 7 2

The result tells you that the average is slowly acknowledging the trend in the data. This
happens because the last reading counts only for 20 percent, whereas 80 percent comes from
the previous value. If you want to make your average more reactive to recent values, you

must increase the weight of the last factor. Let's see what happens by changing 20 percent to
60 percent:

A 1 = 6O

A 2 = (62 x 60 + 60 x 40) / 100 = 61.2

A 3 = (67 x 60 + 61.2 x 40) / 100 = 64 .68

You notice that the formula is still smoothing the values, but it gives much more impor-
tance to recent values. One of the advantages of exponential smoothing is that it is very easy
to implement. The following is an example of RobotC code"

long ave;

// initialize the average

ave = SensorValue[Sl] ;

// compute average

while (true)

{
ave = (SensorValue[Sl] * 20 + ave * 80) / i00;

// other instructions...

}

Simple, isn't it? You could be tempted to reduce the mathematical expression, but be
careful; remember what we said about multiplying and dividing integer numbers. These are
okay:

ave = (SensorValue[Sl] * 2 + ave * 8) / I0;

ave = (SensorValue[Sl] + ave * 4) / 5;

But this, though mathematically equivalent, leads to a worse approximation:

ave = SENSOR 1 / 5 + ave * 4 / 5;

www.syngress.com

240 Chapter 12 �9 Doing the Math

Using Interpolation
You've built a custom temperature sensor that returns a raw value of 200 at 0 ~ C and 450 at

50 ~ C. What temperature corresponds to a raw value o f315?Your robotic crane takes 10

seconds to lift a load of 100g, and 13 seconds for 200g. H o w long will it take to lift 180g?

To answer these and similar questions, you would turn to interpolation, a class of mathematical

tools designed to estimate values from known data.

Interpolation has a simple geometric interpretation: If you plot your known data as

points on a graph, you can draw a line or a curve that connects them.You then use the

points on the line to guess the values that fall inside your data. There are many kinds of

interpolation, that is, you can use many different equations corresponding to any possible

mathematical curve to interpolate your data. The simplest and most commonly used one is

Doing the Math ~ Chapter 12 241

linear interpolation, for which you connect two points with a straight line, and this is what we
are going to explain here (see Figure 12.3).

Figure 12.3 Linear Interpolation

Please be aware that many physical systems don't follow a linear behavior, so linear inter-

polation will not be the best choice for all situations. However, linear interpolation is usually

fine even for nonlinear systems, if you can break down the ranges into almost linear sections.

In following standard terminology, we will call the parameter we change the independent
variable, and the one that results from the value of the first, the dependent variable. With a very

traditional choice, we will use the letter X for the first and Y for the second. The general

equation for linear interpolation is:

(Y - Y a) / (Y b - Y a) = (X - X a) / (X b - X a)

where Ya is the value of Y we measured for X - X a and Y b the one for X b. With some

simple work, we can isolate the Y and transform the previous equation into"

Y = (X - X a) �9 (Yb - Y a) / (Xb - Xa) + Y a

This is very simple to use, and allows you to answer your question about the custom

temperature sensor. The raw value is your independent variable X, the one you know. The

terms of the problem are:

X a = 200 Y a - 0

X b - 4 5 0 Y b - 5 0

X = 3 1 5 Y = ?

We apply the formula and get:

Y = (315 - 200) x (50 -O) / (450 - 200) + 0 = 23

www.syng ress . com

242 Chapter 12 �9 Doing the Math

To make our formula a bit more practical to use, we can transform it again. We define:

m = (Y b - Y a) / (X b - Xa)

If you are familiar with college math, you will recognize in m the slope of the straight

line that connects two points. N o w our equation becomes:

Y = m x X - m x X a + Y a

As X a and Y a are known constants, we compute a new term k as:

b = Y a - m x X a

So our final equation becomes:
Y = m x X + b

This is the standard equation of a straight line in the Cartesian plane. Looking back to

our previous example, you can now compute m and b for your temperature sensor:

rn = (5 0 - O) / (4 5 0 - 200) = 0.2

b = O - 0 . 2 x 200 = -40

Y = O . 2 x X - 4 0

You can confirm your previous result:

Y = 0.2 x 3 1 5 - 4 0 = 23

Implementing this equation inside a program for the N X T will require that you convert

the decimal value 0.2 into a multiplication and a division, as follows:

temp = (raw * 2) / I0 - 40;

Interpolation is also a good tool when you want to relocate the output from a system in

a different range of values. This is what the N X T firmware does when converting raw values

from the light and sound sensors into a percentage.You can do the same in your application.

Suppose you want to change the way raw values from the light sensor get converted into a

percentage. The raw values that the analog sensors return are always in the range 0 to 1,023,

but extreme raw values are rare. Let's say you want to fix an arbitrary range of 900 -> 0

percent and 500 -> 100 percent, and this is what you get from the interpolation formula:

m = (0 - 100) / (9 0 0 - 500) =-0 .25

b = 100 + 0.25 x 500 = 225

Y= -0.25 x X+ 225

Multiplying by 0.25 is like dividing by 4, so we can write this expression in code as:

perc = - raw / 4 + 225;

Doing the Math �9 Chapter 12 243

Understanding Hysteresis
Hysteresis is actually more a physical than a mathematical concept. We say that a system has

some hysteresis when it follows a path to go from state A to state B, and a different path

when going back from state B to state A. Graphing the state of the system on a chart shows

two different curves that connect the points A and B, one for going out and one for coming

back (see Figure 12.4).

Figure 12.4 Hysteresis in Physical Systems

Hysteresis is a c o m m o n property of many natural phenomena, magnetism above all, but

our interest here is in introducing some hysteresis in our robotics programs. Why should you

do it? First of all, let us say this is quite a c o m m o n practice. In fact, many automation devices

based on some kind of feedback have been equipped with artificial hysteresis.

A very handy example comes from the thermostat that controls the heating in your

house. Imagine that your heating system relies on a thermostat designed to maintain an

exact temperature, and that during a cold winter you program your desired home tempera-

ture to 21 ~ C (70 ~ F).As soon as the ambient temperature goes below 21 ~ C, the heater

starts. In a few minutes, the temperature reaches 21~ C and the heater stops, then a few min-

utes later it starts again, and so on, all day long. The heater would turn off and on constantly

as the temperature varies around that exact point. This approach is not the best one, because

every start phase requires some time to bring the system to its maximum efficiency, just

about when it gets stopped again. In introducing some hysteresis, the system can run more

smoothly: We can let the temperature go down to 20.5 ~ C, and then heat up the house until

it reaches 21.5 ~ C. W h e n the temperature in the house is 21 ~ C, the heater can be either on

or off, depending on whether it's going from on to off or vice versa.

www.syngress.com

244 Chapter 12 �9 Doing the Math

Hysteresis can reduce the number of corrective actions a system has to take, thus
improving stability and efficiency at the price of some tolerance. Autopilots for boats and
planes are another good example. Could you think of a task for your robots that could ben-
efit from hysteresis? Line following is a good example.

In Chapter 4, in talking about light sensors, we explained that the best way to follow a
strip on the floor is to actually follow one of its edges, the borderline between white and
black. In that area, your sensor will read a "gray" value, some intermediate number between
the white and black readings. Having chosen that value for gray, a robot with no hysteresis
may correct left when the reading is greater than gray and right when the reading is less than
gray. To introduce some hysteresis, you can tell your robot to turn left when reading gray+h
and right when reading gray-h, where h is a constant properly chosen to optimize the perfor-
mance of your robot. There isn't a general rule that is valid for any system; you must find the
optimal value for h by experimenting: Start with a value of about 1/6 or 1/8 of the total
white-black difference.This way, the interval gray-h to gray+h will cover 1/3 or 1/4 of the
total range. Then start increasing or decreasing its value, observing what happens to your
robot, until you are happy with its behavior.You will discover that by reducing h your robot
will narrow the range of its oscillations, but will perform more frequent corrections.
Increasing h, on the other hand, will make your robot perform fewer corrections but with
oscillations of larger amplitude (see Figure 12.5).

Figure 12.5 How Hysteresis Affects Line Following

Doing the Math �9 Chapter 12 245

We suggest a simple experiment that will help you put these concepts into practice by

building a real sensor setup that you can manipulate by hand to get a feel for how the robot

would behave. Write a simple program that plays tones to ask you to turn left or right. For

example, it can beep high when you have to turn left and low to turn right. The RobotC

code that follows shows a possible implementation:

const long GRAY = 50;

const long H = 3 ;

task main()

{
SetSensorType (SI, sensorLightActive) ;

while

{
(true)

if (SensorValue [SI] >GRAY+H)

PlayTone(440,20) ;

else if (SensorValue[Sl]<GRAY-H)

PlayTone(1760,20) ;

waitl0Msec (2) ;

Equip your N X T with a light sensor attached to input port 1 and you are ready to go.

You should tune the value of the G R A Y constant to what your sensor actually reads when

placed exactly over the borderline between the white and the black. When the program
runs, you can move the sensor toward or away from the line until you hear the beep that
asks you to correct the direction (keep the sensor always at the same distance from the pad).
Experiment with different values for H to see how the accepted range of readings gets wider
or narrower.

If you keep a pencil in your hand together with the light sensor, you can even perform

this experiment blindfolded! Try to follow the line by just listening to the "instructions"

coming from your N X T and compare the lines drawn by your pencil for different values of H.

Higher Math
Robots perform mathematical computations for two reasons: to understand the world

around them and to plan their actions. Consider a robot that seeks a certain object~say, a

blue ball. The robot uses its sensors to obtain information about the world around it and

about its own position. It uses this information to try to estimate where the blue ball is and

where it is. Once the robot decides where the ball is and where it is, it needs to plan how to

www.syngress.com

246 Chapter 12 �9 Doing the Math

reach the ball. If the environment contains obstacles (such as walls or other robots), finding a
path may be a challenging task that requires interesting computations. In some robots, the
estimation and planning are simple and require no math or just a bit of math. But a robot
may require more sophisticated calculations than we have shown in this chapter.

Integers are not always suitable for complex mathematical calculations, because integer
division can generate absolute errors of up to +_1/2, which may be too high. For example,

dividing 301 by 2 gives the integer 150, whereas the exact answer is 150 1/2. Computers

use several other number types to reduce these errors. The most important noninteger

number types are fixed-point numbers and floating-point numbers. We explain these number
types with decimal examples, but keep in mind that computers always represent numbers in
binary format (base 2). Suppose that each word in the computer's memory can store a
number with a sign and four decimal digits, and suppose that a certain word stores the digits
3759. In an integer, the decimal point is to the right of the rightmost digit, so if we view

these digits as an integer, the number that the word represents is 3,759.0. We can also decide
that the decimal point is at some arbitrary fixed position, such as between the second and

third digits. The computer stores exactly the same information, but now the word in
memory represents 37.59. This is called a fixed-point representation. In fixed point, we

cannot represent very large numbers, but we have more accuracy. For example, fixed-point
numbers are ideal for averaging sensor readings in percentage mode. On the one hand, the
readings (and the averages) never exceed 100, so we never need very large numbers, and on
the other hand, fixed-point numbers allow us to represent fractional averages more accu-
rately than integers. To view the digits stored in a memory word as a floating-point number,
we split the digits into two groups, a fraction and an exponent. Let's assume that we use the
three leftmost digits as a fraction and the last digit as an exponent. In this case, our memory

word would represent the number 0.375 x 10 ~, or 375,000,000. We now have less accuracy,
because our numbers have only three significant digits, but we have a much larger range of
numbers: These four decimal digits allow us to represent numbers that approach 1 billion.

The processor in every desktop or laptop computer can perform arithmetic on both
integers and floating-point numbers very quickly. Therefore, complex mathematical calcula-
tions that can produce noninteger results are usually performed on such computers using
floating-point arithmetic. The processor of the N X T can perform only integer arithmetic. It
can be programmed to perform floating-point arithmetic, but then the arithmetic operations
are carried out in software, so they are fairly slow. RobotC supports floating-point calcula-

tions in this way. Neither the N X T nor your PC supports fixed-point arithmetic in the pro-

cessor itself, but fixed-point arithmetic that is implemented in software is only slightly slower

than integer arithmetic. Therefore, fixed-point arithmetic is a good choice for performing

more complex calculations on the NXT.

Addition and subtraction on fixed-point numbers are performed as though they were

integers. For example, 37.59 + 0.63 = 38.22; we can obtain this result by adding 3,759 +
63, which gives 3,822. In other words, for addition and subtraction, it does not matter where

Doing the Math �9 Chapter 12 247

the point is, as long as it is in the same fixed positions in all the numbers. Multiplication and
division are a bit more complex.The product 37.59 x 0.63 should give 23.6817, but the
integer product 3,759 x 63 gives 236,817.To get the correct answer, we need to multiply the
input numbers as though they were integers, and then shift the integer product to the right
by two digits (because our fixed-point numbers have two digits to the right of the point).
This truncates the digits 17 and gives 2368, which we interpret as 23.68, which is the cor-
rect fixed-point answer. The answer is not exact, but then there is really no way to represent
the 23.6817 with only four decimal digits[Fixed-point multiplication done this way can

easily overflow, so you need to either temporarily store the integer product in a number type
with more digits (say, long, rather than short), or to resort to a more complex multiplication
algorithm. Division is somewhat similar to multiplication: To get the correct fixed-point

answer, you need to shift the dividend to the left before you divide them by integers. For

example, the integer division 375,900 / 63 gives 5,966, which is the correct fixed-point rep-
resentation of 37.59 / 0.63 = 59.66. Here too you need a temporary variable with more
digits.

Fixed-point arithmetic allows you to strike the right balance between accuracy and
range, and it is just a bit slower than integer arithmetic. Floating-point arithmetic is even

more convenient than fixed-point, because the computer chooses the right range for you
after every arithmetic operation, but it is not more accurate and it is slow on the N X T (and
is not available at all in NXT-G). Use integers if the accuracy is good enough for you, use

fixed-point if you need more accuracy, and use floating-point if speed is not important, you
need the convenience, and your programming environment supports floating-point.

Another point to keep in mind if your robot must perform sophisticated calculations is
that software components are available that can help you implement these calculations. For
example, there are MyBlock and third-party native blocks that compute square roots and
trigonometric functions, such as sine and cosine. RobotC also includes functions that com-
pute these functions. As time goes by, more and more such building blocks will become
available, both for NXT-G and for RobotC. Expressing calculations in terms of preexisting
building blocks simplifies programming considerably; this is how virtually any complex piece
of software is built.

248 Chapter 12 �9 Doing the Math

Summary
Math is the kind of subject that people either love or hate. If you fall in the latter group, we
can't blame you for having skipped most of the content of this chapter. Don't worry; there
was nothing you can't live without. Just make an effort to understand the part about multi-
plication and division, because if you ignore the possible side effects, you could end up with

some bad surprises in your calculations.
Consider the other topics~averages, interpolation, and hysteresis~to be like tools in

your toolbox. Averages are a useful instrument to soften the differences between single read-

ings and to ignore temporary peaks. They allow you to group a set of readings and consider

it as a single value. When you are dealing with a flow of data coming from a sensor, the
moving average is the right tool to process the last n readings. The larger n is, the more the

smoothing effect on the data.
Weighted averages have an advantage over simple averages in that they can show the

trend in the data:You can assign the weights to put more importance on more recent data.

Exponential smoothing is a special case of weighted averages, the results of which are partic-

ularly convenient on the implementation side, because they allow you to write compact and

efficient code.
The interpolation technique proves useful when you want to estimate the value of a

quantity that falls between two known limits. We described linear interpolation, which cor-
responds to tracing a straight line across two points in a graph.You then can use that line to
calculate any value in the interval.

Hysteresis, a concept borrowed from physics, will help you in reducing the number of
corrections your robots have to make to keep within a required behavior. By adding some
hysteresis to your algorithms, your robots will be less reactive to changes. Hysteresis can also
increase the efficiency of your system.

Some robots may require more sophisticated calculations. This may involve using fixed-
point or floating-point numbers and more complex mathematical calculations. If your robot
needs complex calculations, try to find building blocks that perform parts of the computa-
tion. These building blocks can include MyBlock and third-party blocks that others have
made available, or library functions in textual programming languages.

It's not necessary that you remember all the equations, just what they're useful for! You
can always refer back to the text when you find a problem that might benefit from a mathe-
matical tool that you read about.

Chapter 13

Knowing
Where You Are

S o l u t i o n s in t h i s c h a p t e r "

�9 Choosing Internal or External Guidance

�9 Looking for Landmarks: Absolute Positioning

�9 Map Matching Using Ultrasonic Sensor

�9 Combining Compass Sensor to Increase Precision

�9 Measuring Movement: Relative Positioning

�9 Measuring Movement: Acceleration Sensor

249

250 Chapter 13 �9 Knowing Where You Are

Introduction
After our first few months of experimenting with robotics using the Mindstorms N X T kit,
we began to wonder if there was a simple way to make our robot know where it was and
where it was g o i n g ~ i n other words, we wanted to create some kind of navigation system
able to establish its position and direction. We started reading books and searching the

Internet, and discovered that this is still one of most demanding tasks in robotics and that

there really isn't any single or simple solution.
In this chapter, we will introduce the concept of navigation, which can get very com-

plex. We will start describing various positioning methods. Then we will provide some
examples for these methods, showing solutions and tricks that suit the possibilities of the
Mindstorms N X T system. In this discussion, we will introduce navigation on pads equipped
with grids or gradients, use of laser beams to locate your robot in a room and explain how
to equip your robot with sensors for the various measurements, and will provide the math to

convert those measurements to determine your position.

Choosing Internal or External Guidance
There is no single method for determining the position and orientation of a robot, but you
can combine several different techniques to get useful and reliable results. All these tech-
niques can be classified into two general categories: absolute and relative positioning methods.
This classification refers to whether the robot looks to the surrounding environment for

tracking progress, or just to its own course of movement.
Absolute positioning refers to the robot using some external reference point to figure

out its own position. These can be landmarks or obstacles in the environment, either natural
landmarks or obstacles recognized through sensory inputs such as the touch, ultrasonic, mag-
netic compass sensors, or more often, artificial landmarks easily identified by your robot
(such as colored tape on the floor). Another common approach includes using radio (or
light) beacons as landmarks, like the systems used by planes and ships to find the route under
any weather condition. Absolute positioning requires a lot of effort: you need a prepared

environment, or some special equipment, or both.
Relative positioning, on the other hand, doesn't require the robot to know anything

about the environment. It deduces its position from its previous (known) position and the
movements it made since the last known position. This usually is achieved through the use
of encoders that precisely monitor the turns of the wheels, but there are also inertial systems

that measure changes in speed and direction. This method also is called dead reckonin 2 (short

for deduced reckoning).
Relative positioning is quite simple to implement, and applies to our N X T robots, too.

Unfortunately, it has an intrinsic, unavoidable problem that makes it impossible to use by
itself." it accumulates errors. Even if you put all possible care into calibrating your system,

Knowing Where You Are ~ Chapter 13 251

there will always be some very small difference due to slippage, load, or tire deformation that
will introduce errors into your measurements. These errors accumulate very quickly, thus rel-
egating the utility of relative positioning to very short movements. Imagine you have to

measure the length of a table using a very short ruler: you have to put it down several times,
every time starting from the point where you ended the previous measurement. Every place-

ment of the ruler introduces a small error, and the final result is usually very different from
the real length of the table.

The solution employed by ships and planes, which use beacons like Loran or Global

Positioning Systems (GPS) systems or reference earth's magnetic field using Compass, is to

combine methods from the two groups: to use dead reckoning to continuously monitor

movements and, from time to time, some kind of absolute positioning to zero the accumu-
lated error and restart computations from a known location. This is essentially what human

beings do: when you walk down a street while talking to a friend, you don't look around

continuously to find reference points and evaluate your position; instead, you walk a few

steps looking at your friend, then back to the street for an instant to get your bearings and

make sure you haven't veered off course, then you look back to your friend again.

You're even able to safely move a few steps in a room with your eyes shut, because you

can deduce your position from your last known one. But if you walk for more than a few

steps without seeing or touching any familiar object, you will soon lose your orientation.

In the rest of the chapter, we will explore some methods for implementing absolute and

relative positioning in N X T robots. It's up to you to decide whether or not to use any one

of them or a combination in your applications. Either way, you will discover that this under-
taking is quite a challenge!

Looking for Landmarks: Absolute Positioning
The most convenient way to place artificial landmarks is to put them flat on the floor, since

they won't obstruct the mobility of your robot and it can read them with a light sensor

without any strong interference from ambient light.You can stick some self-adhesive tape
directly on the floor of your room, or use a sheet of cardboard or other material over which
you make your robot navigate.

Line following, which we have talked about in this book, is probably the simplest

example of navigation based on using an artificial landmark. In the case of line following,

your robot knows nothing about where it is, because its knowledge is based solely on

whether it is to the right or left of the line. But lines are indeed an effective system to steer

a robot from one place to another. Feel free to experiment with line following; for example,

create some interruptions in a straight line and see if you are able to program your robot to

find the line again after the break. It isn't easy. When the line ends, a simple line follower

would turn around and go back to the other side of the line.You have to make your soft-

ware more sophisticated to detect the sudden change and, instead of applying a standard

www.syngress.com

252 Chapter 13 �9 Knowing Where You Are

route correction, start a new searching algorithm that drives the robot toward a piece of line

further on.Your robot will have to go forward for a specific distance (or time) corresponding

to the approximate length of the break, then turn left and right a bit to find the line again

and resume standard navigation.

When you're done and satisfied with the result, you can make the task even more chal-

lenging: place a second line parallel to the first, with the same interruptions, and see if you
can program the robot to turn 90 degrees, intercept the second line, and follow that one. If

you succeed in the task, you're ready to navigate a grid of short segments, either following

along the lines or crossing over them like a bar code.
You can improve your robot navigation capabilities, and reduce the complexity in the

software, using more elaborate markers. The N X T light sensor is not very good at distin-
guishing different colors, but is able to distinguish between differences in the intensity of the

reflected light.You can play with black and gray tapes on a white pad, and use their color as
a source of information for the robot. Remember that a reading at the border between black
and white can return the same value of another on plain gray. Move and turn your robot a

bit to decode the situation properly, or employ more than a single light sensor if you have
them. Alternatively, you could use the color sensor (sold separately by LEGO) with your

own color-coded markers.
Instead of placing marks on the pad, you can also print on it with a special black and

white gradient. For example, you can print a series of dots with an intensity proportional to
their distance from a given point A. The closer to A, the darker the point; A is on plain black
(see Figure 13.1). On such a pad, your robot will be able to return to A from any point, by

simply following the route until it reads the minimum intensity.

Figure 13.1 A Gradient Pad with a Single Attractor

Knowing Where You Are �9 Chapter 13 253

The same approach can be used with two points A and B, one being white and the
other black. Searching for the whitest route, the robot arrives at A, whereas following the
darkest it goes to B (see Figure 13.2).

RoboCup Junior uses a gradient pad for the soccer field. While searching for and
chasing the ball, the robot could be anywhere on the field. When it gets the ball, it can refer
to the pad below and with a light sensor, read the gray values and deduce how far it is from
the goal. The same technique can then be used to detect which side is the opponent's goal.
Say the opponent's goal is on the dark edge of the mat; the robot can spin around itself
while measuring the gray values below, and deduce which side is the opponent's goal.

F igure 13.2 A Gradient Pad with Two Attractors

Continued

www.syngress.com

254 Chapter 13 �9 Knowing Where You Are

Knowing Where You Are �9 Chapter 13 255

The M I N D S T O R M S N X T kit comes with a pad that has gradient printed on the edge,
for black and white as well as color use. This is a good place to start and experiment with.

There are other possibilities. People have suggested using bar codes on the floor: when
the robot finds one, it aligns and reads it, decoding its position from the value. Others tried
complex grids made out of stripes of different colors. Unfortunately, there isn't a simple
solution valid for all cases, and you will very likely be forced to use some dead reckoning
after a landmark to improve the search.

Following the Beam
In the real world, most positioning systems rely on beacons of some kind, typically radio

beacons. By using at least three beacons, you can determine your position on a two-dimen-

sional plane, and with four or more beacons you can compute your position in a three-
dimensional space. Generally speaking, there are two kinds of information a beacon can

supply to a vehicle: its distance and its heading (direction of travel). Distances are computed
using the amount of time that a radio pulse takes to go from the source to the receiver: the
longer the delay, the larger the distance. This is the technique used in the Loran and the GPS

systems. Figure 13.3 shows why two stations are not enough to determine position: because

there are always two locations A and B that have the same distance from the two sources.

Figure 13.3 Ambiguous Positioning with Two Stations

If you add a third station, the system can solve the ambiguity, provided that this third sta-

tion does not lie along the line that connects the previous two stations (see Figure 13.4).

www.syngress.com

256 Chapter 13 �9 Knowing Where You Are

Figure 13.4 Positioning with Three Stations Using Distances

The stations of the VHF Omnidirectional Range system (VOR) cannot tell you the dis-

tance from the source of the beacon, but they do tell you their heading; that is, the direction
of the route you should go to reach each station. Provided that you also know you're
heading north, two V O R stations are enough to locate your vehicle in most cases. Three of
them are required to cover the case where the vehicle is positioned along the line that con-
nects the stations, and as for the Loran and GPS systems, it's essential that the third station

itself does not lay along that line (see Figure 13.5).

Figure 13.5 Positioning with Three Stations Using Headings

Using three stations, you can do without a compass; that is, you don't need to know

you're heading north. The method requires that you know only the angles between the sta-

tions as you see them from your position (see Figure 13.6).

Knowing Where You Are �9 Chapter 13 257

Figure 13.6 Positioning with Three Stations Using Angles

To understand how the method works, you can perform a simple experiment: take a

sheet of paper and mark three points on it that correspond to the three stations. N o w take a

sheet of transparent material and put it over the previous sheet. Spot a point anywhere on it

that represents your vehicle, and draw three lines from it to the stations, extending the lines

over the stations themselves. Mark the lines with the name of the corresponding stations.

Now, move the transparent sheet and try to intersect the lines again with the stations. An

unlimited number of positions connect two of the three stations, but there's only one loca-

tion that connects all three of them.

The problem in this approach is, currently, there is no known device in the N X T world

that would emit beacons, so first you have to look for an appropriate device. Unless you're

an electrical engineer and are able to design and build your own custom radio system, you

better stick with something simple and easy to find. The source need not be necessarily
based on radio waves~l ight is effective as well, and we already have such a detector (the
light sensor) ready to interface to the NXT.

W h e n you use light sources as small lighthouses, in theory you can make your robot
find its way. But there are a few difficulties to overcome first:

�9 The light sensor isn't d i rec t ional~you must shield it somehow to narrow its angle.

�9 Ambient light introduces interference, so you must operate in an almost lightless

room.

�9 For the robot to be able to tell the difference between the beacons, you must cus-

tomize each one; for example, making them blink at different rates (as real light-

houses do).

Laser light is probably a better choice. It travels with min imum diffusion, so when it hits

the light sensor, it is read at almost 100 percent. Laser sources are now very common and

very cheap.You can find small battery-powered pen laser pointers for just a few dollars.

www.syngress.com

258 Chapter 13 ~ Knowing Where You Are

Laser light, even at low levels, is very damaging to eyes~never direct it
toward people or animals.

If you have chosen laser as a source of light, you don't need to worry about ambient

light interference. But how exactly would you use laser? Maybe by making some rotating

laser lighthouses? Too complex. Let's see what happens if we revert the problem and put the

laser source on the robot. Now you need just one laser, and can rotate it to hit the different

stations. So, the next hurdle is to figure out how you know when you have hit one of those

stations. If you place an N X T with a light sensor in every station, you can make it send back

a message when it gets hit by the laser beam, and using different messages for every station,

make your robot capable of distinguishing one from another.
The N X T light sensor is quite a small target to hit with a laser beam, and as a result, it

was almost impossible to hit accurately. To stick with the concept but make things easier, we

discovered you could build a sort of diffuser in front of it to have a wider detection area.

With this solution, you will still need several NXTs, at least three for the stations and

one for your robot. Isn't there a cheaper option? A different approach involves employing

the simple plastic reflectors or reflective tapes used on cars, bikes, and as cat's-eyes on the
side of the road.You can find reflective tapes in your local art and craft stores. They have the
property of reflecting any incoming light precisely back in the direction from which it

came. Using those as passive "stations," when your robot hits them with its laser beam they

reflect it back to the robot, where you have placed a light sensor to detect it.
This really seems the perfect solution, but it actually still has its weak spots. First, you

have lost the ability to distinguish one station from the other.You also have to rely on dead
reckoning to estimate the heading of each station. We explained that dead reckoning is not
very accurate and tends to accumulate errors, but it can indeed provide you with a good
approximation of the expected heading of each station, enough to allow you to distinguish
between them. After having received the actual readings, you will adjust the estimated
heading to the measured one. The second flaw to the solution is that most of the returning

beam tends to go straight back to the laser beam.You must be able to very closely align the

light sensor to the laser source to intercept the return beam, and even with that precaution,

detecting the returning beam is not very easy.
To add to these difficulties, there is some math involved in deducing the position of the

robot from the beacons, and it's the kind of math whose very name sends shivers down most

students' spines" trigonometry! This leads to another problem: the standard N X T firmware

has no native support for trig functions, but in theory you could implement NXT-G blocks
for such functions. If you want to proceed with using beacons, you really have to switch to

P,.obotC or NBC, which both provide much more computational power.

Knowing Where You Are �9 Chapter 13 259

If you're not in the mood to face the complexity of trigonometry and alternative
firmware, you can experiment with simpler projects that still involve laser pointers and
reflectors. For example, you can make a robot capable of"going home." Place the reflector at
the home base of the robot; that is, the location where you want it to return. Program the
robot to turn in place with the laser active, until the light beam intercepts the reflector and
the robot receives the light back, then go straight in that direction, checking the laser target
from time to time to adjust the heading.

Map Matching Using Ultrasonic Sensor
Have you seen bats fluttering in evening twilight? Bats can get around just fine, doing their
regular business in feeble light. Because, instead of light, they use sound to get around in the

dark. In other words to "see" with their ears, they make sound in pulses. This sound reflects

when it hits an object, and an echo bounces back to the bat. The time lapsed from making
the sound and its echo tells the bat how far the object is. The ultrasonic sensor works on a
similar principle.

You can use this technique to first detect your surroundings and recognize landmarks.
Then you can use this information with a map to localize and establish your position.

In this method information acquired from the sensors is compared to a map or model of
the environment. If features from the sensor's readings and the model map match, then the
robot's absolute location can be determined. In the previous example, these landmarks can
be incorporated into your program to localize the robot. When the robot approaches a door,
the ultrasonic sensor returns longer obstacle readings. These readings continue until the
robot moves across the door. As shown in Figure 13.7, this information can help deduce that

the robot has crossed the first door (or second door) and can identify its precise location.

Figure 13.7 The Ultrasonic Sensor Can Detect Surroundings and Recognize
Landmarks

www.syngress.com

260 Chapter 13 �9 Knowing Where You Are

Combining Compass
Sensor to Increase Precision
The inputs used in the preceding method included ultrasonic sensor readings, and a known
map. Additional inputs can help improve accuracy.You could use distance from the wall, and

orientation of the robot as additional inputs. The ultrasonic sensor would provide you the
distance from the wall. These readings can be utilized with appropriate corrective action of

wheel motors to maintain constant distance from the wall. However as shown in Figure

13.8, when unexpected drifts occur or objects appear in front of the ultrasonic sensor, the

sensor will provide those readings too.You can either compare such readings with your pre-
viously known map information or ignore them. Better yet, you can use the additional input

of a compass sensor to determine and maintain heading.
A compass sensor would give you the magnetic heading your compass is pointing to. As

your robot starts to maintain constant distance from the wall, note the heading from the
compass sensor, and during subsequent movement maintain that heading by applying correc-

tive action of wheel motors.

Figure 13.8 A Compass Sensor on the Robot Can Help Avoid Losing Orientation

Measuring Movement: Relative Positioning
The technique of measuring the movement of the vehicle, called odometry, requires an encoder
that translates the turn of the wheels into the corresponding traveled distance. To make

things easier, the new N X T motors have a built-in encoder that is great for this purpose. To

provide two degrees of freedom while moving, you typically will need two such motors, and

as described in Chapter 3, you can also synchronize these two motors to get a straight-line

motion.

Knowing Where You Are �9 Chapter 13 261

The equations for computing the position from the decoded movements depends on the

architecture of the robot. We will explain it here using the example of the differential drive,

once again referring you to Appendix A for further resources on the math used.
Suppose that your robot has two wheels, each connected to a motor through gearing.

Given D as the diameter of the wheel, R as the resolution of the built-in encoder in motors
(the number of counts per turn), and G the gear ratio between the motor and the wheel,
you can obtain the conversion factor F that translates each unit from the encoder into the
corresponding traveled distance:

F = (D x l - [) / (G x R)

The numerator of the ratio, D x r[, expresses the circumference of the wheel, which

corresponds to the distance that the wheel covers at each turn. The denominator of the
ratio, G x R, defines the increment in the count of the encoder (number of ticks) that corre-

sponds to a turn of the wheel. F results in the unit distance covered for every tick.

Your robot uses the largest spoked wheels, which are 81.6mm in diameter.The built-in
encoder of the motors has a resolution of 360 ticks per turn, and it is connected to the
wheel with a 1:5 ratio (five turns of the sensor for one turn of the wheel).The resulting
factor is:

F = 81.6 mm x 3.1416 / (5 x 360 ticks) ~ 0.14242 mm/tick

This means that every time the sensor counts one unit, the wheel has traveled

0.14242mm. In any given interval of time, the distance T L covered by the left wheel will

correspond to the increment in the encoder count I L multiplied by the factor F"

T L = I L x F

and similarly, for the right wheel:

TR=IRXF
The centerpoint of the robot, the one that's in the middle of the ideal line that connects

the drive wheels, has covered the distance TC:

T C = (T R + T L) / 2

To compute the change of orientation AO you need to know another parameter of your

robot, the distance between the wheels B, or to be more precise, between the two points of

the wheels that touch the ground:

a O = (T R - T L) / B

This formula returns AO in radians.You can convert radians to degrees using the rela-

tionship:

AODegrees = AORadian s x 180 /1-[

w w w . s y n g r e s s . c o m

262 Chapter 13 �9 Knowing Where You Are

You can now calculate the new relative heading of the i:obot, the new orientation O at

time i based on previous orientation at time i - 1 and change of orientation AO. O is the
direction in which your robot is pointed, and results in the same unit (radians or degrees)
you choose for AO.

0 i = Oi_ 1 + AO

Similarly, the new Cartesian coordinates of the centerpoint come from the previous ones
incremented by the traveled distance:

x i=x i_ 1 + T C x c o s O i

Yi = Yi-1 + TC x sin 0 i

The two trigonometric functions convert the vectored representation of the traveled dis-
tance into its Cartesian components.

O h , ' this villainous trigonometry again! Unfortunately, you can't get rid of it when

working with positioning. Thankfully, there are some special cases where you can avoid trig

functions; for example, when you're able to make your robot turn in place precisely 90

degrees, and truly go straight when you expect it to. In this situation, either x or y remains

constant, as well as the other increments (or decrements) of the traveled distance T C.

Measuring Movement: Acceleration Sensor
The traveled distance can either be measured by the rotations of the motor that turns the

wheels or the acceleration and velocity of the robot and the time it travels (the latter is

called Inertial Navigation).You could use an acceleration sensor to measure acceleration of
your robot.

The acceleration sensor measurements are influenced by the gravity of earth. So, if your

robot is stationary on an inclined plane, you would still read a nonzero acceleration due to

the gravitational influence. To correct that, you can use a gyroscopic sensor to know inclina-
tion of your robot.

If you are using the method of acceleration, in theory, the acceleration value A inte-
grated over time T O to T x will give you velocity V x of your robot:

T

The velocity value V integrated over time T O to T x will give you the distance traveled.

T~

D• I V T'0
There are third-party gyroscopic and acceleration sensors with varying sensitivity levels

from HiTechnic and Mindsensors. These sensors can be used to measure acceleration of your

w w w . s y n g r e s s . c o m

Knowing Where You Are �9 Chapter 13 263

robot. This seems easy if you know the formulae, but in practice a small error can result in
unbounded growth in integrated measurements. To minimize errors, you need to take read-
ings at rapid and constant intervals. With standard N X T firmware, it is almost impossible to

achieve the required sampling rate.

Summary
We promised in the introduction that this was a difficult topic, and it was. Nevertheless,
making a robot that has even a rough estimate of its position is a rewarding experience.

There are two categories of methods for estimating position, one based on absolute posi-
tioning and the other on relative positioning. The first category usually requires landmarks or
beacons as external references. We described some possible approaches based on laser beams
and introduced you to the difficulties that they entail. With the powerful I2C interface that
N X T now offers, in future you can anticipate some advanced high-precision industrial posi-
tioning systems integrated with NXT. The Map Matching technique can make good use of
Ultrasonic Sensor to read and verify map and determine position. It is possible to interface
N X T robots with GPS systems, however outdoor GPS has granularity of 0.5 meters, which

usually is inadequate for our robots.
Relative positioning is more readily applicable to N X T robots. We explained the math

required to implement deduced reckoning in a differential drive robot, and suggested some
alternative architectures that help in simplifying the involved calculations. We also explained
how acceleration sensors could be utilized for measuring movements, and problems you may
encounter. The real life navigation systems~like those used in cars, planes, and ships~usu-
ally rely on a combination of methods taken from both categories: dead reckoning isn't very
computation intensive and provides good precision in a short range of distances, whereas
absolute references are used to zero the errors it accumulates.

This Page Intentionally Left Blank

266 Chapter 14 �9 Classic Projects

Introduction
From this chapter on, we will explore several example projects that could be the inspiration
for many others of your own creation. As we already explained, the spirit of the book is not
to provide you with step-by-step instructions, but rather to give you a foundation of infor-

mation and let your imagination and creativity do the rest. For this reason, you will find

some images of each model, some text that describes their distinguishing characteristics, and

tricks that could be useful for other projects. Of course, we don't expect each detail to be

visible in the pictures. It isn't important that your models look exactly like ours!

Another point we want to bring to your attention is that there is no reason to read

Chapters 14-25 in order. Feel free to jump to the project that attracts you most, because

they aren't ordered according to their level of difficulty.
In this chapter, we'll show you some projects that could be considered "classic," because

almost everybody with an N X T kit tries them sooner or later. Though you might not find

them exciting, working with them is a good way to build up some solid experience and

learn tricks that will prove useful in more complex projects. If this is among your first forays

into robotics, we strongly suggest you dedicate some time to them.

All the robots appearing in this chapter have been built primarily from the N X T kit.

When describing some of the robots, a few extra parts may be necessary that do not exist in

the N X T kit. However, most of these are pretty common and you can find them if you have

other T E C H N I C sets.

Exploring Your Room
Well, actually exploring, your room is too strong a term for what we are proposing here; it's
more like surviving your r o o m ~ y o u r robot and your furniture could take some hits! The
task here is to build a robot with the basic capability to move around, detect obstacles, and

change its route accordingly.
For simplicity of design, and for the robot's capability to turn in place, we suggest you

make this robot from differential drive architecture, such as the one shown in Figure 14.1.

Classic Projects �9 Chapter 14 267

Figure 14.1 Start with a Simple Differential Drive

We deliberately chose a gear ratio that makes the robot rather slow: 1:9, obtained from

two 1:3 stages (Figure 14.2). This ensures that if you make some error in the code and the

robot fails to properly detect the obstacle, it won't collide with it at too high a speed. Never
expect everything to go well on the first t ry~because it won't!

Figure 14.2 Detail of the Two-Stage Geartrain

www.syngress.com

268 Chapter 14 �9 Classic Projects

When you feel satisfied with your software and your robot runs safely around your

room, you can always try a faster ratio. Substituting the second 1:3 gearing with two 16t
gears will give you an overall 1:3 ratio, making your robot about three times faster.

The robot is rather large, keeping the main wheels far from the body of the robot.
There's a reason for this too: In a differential drive, the distance between the drive wheels
affects the turning speed of the robot, because the wheels have to cover a longer distance
during turns. The farther the wheels are from the midpoint, the slower the turns.You could
control turns through timing, which would make slow turns a desirable property that would

provide finer movement control. However, with the NXT's built-in rotation sensors, naviga-
tion via rotations provides more consistent control of the turns.

The caster wheel is the same kind we showed in Chapter 9. Now add the NXT and a
couple of bumpers that are normally closed (see Figure 14.3), and you're ready to go--well,
ready to program the robot, anyway. Check out Figure 14.4 to see what the completed
robot looks like.

Figure 14.3 Detail of the Bumper

www.syngress.com

Classic Projects �9 Chapter 14 269

Figure 14.4 The Robot, Complete with NXT and Bumpers

The program itself is very simple: Go straight until one of the touch sensors opens.

W h e n that happens, reverse for a few fractions of a second (or rotations), then turn in place,

right or left depending on which bumper found the obstacle. Finally, resume straight

motion.

Exper iment with different t iming/rotations for turns, until you are happy with the

result.You might also use some random values for turns to make the behavior of your robot

a bit less predictable and thus more interesting. If you feel at ease with the programming,

you can add more intelligence to your c rea tu re~fo r example, to make it capable of realizing

when it's stuck in a cul-de-sac.You can achieve this by moni tor ing the number of collisions

in a given time, or the average time elapsed between the last n collisions, and then adopting

a more radical behavior (such as turning 180 degrees).

Detecting Edges
If your room has a flight of stairs going down, simply equipping the robot with an ultrasonic

sensor facing the floor to sense the edge can avoid a bad fall. However, if you want to use

your ultrasonic sensor for some other purpose, you could use a touch sensor instead, con-

necting the touch sensor to a feeler flush with the ground. W h e n the feeler in front of the

robot drops, you have detected an edge.

Unless you have a third touch sensor, you are forced to use the light sensor. It's time to

look back at some of the tricks explained in Chapter 4 and see whether you find something

www.syngress.com

270 Chapter 14 �9 Classic Projects

useful. A light sensor can actually emulate a touch sensor:You have to place movable parts of
different colors in front of it so that when contact is made, the parts move, and the color of
the brick in front of the light sensor changes.

However, as your kit contains the ultrasonic sensor, use it, because this sensor is ideal for
this purpose. We kept the ultrasonic sensor behind the bumpers so that in most cases it
doesn't interfere in obstacle detection (Figure 14.5).

Figure 14.5 The Ultrasonic Sensor Installed on the Robot

Unfortunately, this system doesn't cover all possible scenarios, because your robot could
approach the edge at an angle that allows a wheel over the edge before detection occurs.You
can improve upon the design and avoid this by providing the robot with two left- and right-

edge sensors, but you'll probably have to give up the double bumper and go with a single
sensor bumper.

Using a different approach, you could write the software to make the robot very cau-
tious, turning slightly left and right from time to time to see whether there's a dangerous

precipice around.

Variations on Obstacle Detection
By using the N X T motor's built-in rotation sensor, you can experiment with indirect

obstacle detection. Program the robot to monitor the rotation count while in motion. If

both motors are on forward, but the count doesn't increase, the robot knows an obstacle has

Classic Projects �9 Chapter 14 271

blocked it. As a positive side effect, the rotation count allows you to use the same platform

for experimenting with navigation, applying some of the concepts about dead reckoning

explained in Chapter 13.

You can also implement indirect obstacle detection using a "drag sensor."The idea

requires that your robot keep a mobile part in touch with the ground, and that the friction

this part exerts against the floor surface when the robot moves activates a touch sensor. For

example, you can use the friction of a rubber tire to oppose the force of a rubber band that

keeps a touch sensor closed. When the robot moves, the friction of the tire on the floor over-
comes the force of the rubber band and opens the touch sensor; as soon as the robot stops
or has been blocked by an obstacle~the friction disappears and the touch sensor closes.

Following a Line
The line-following theme is often mentioned in this book, as we think it is a very useful

indicator of how different techniques can improve the behavior of a robot. The time has

come to give it an official place, and face the topic in its entirety.

Let's review what we have already said about line following:

�9 You must actually follow the edge between the tape and the floor, reading an

average value between dark and bright, so that when you read too dark or too

bright you know which direction to turn to find the route back.

�9 If you want to keep your software and robot as general as possible, you should use

some kind of self-calibration process before the actual following begins. Calibration

consists of taking readings of light and dark areas on the pad before actually starting

line following. This lets your robot adjust its parameters to the actual lighting con-
ditions at the time it runs; these conditions are almost certainly different from those
for which your robot was designed.

�9 Some platforms can benefit from the introduction of a small quantity of hysteresis

to reduce the number of corrections and get a higher efficiency. We explained in
Chapter 12 that hysteresis "widens" the gray area between light and dark, which
keeps the robot from spending too much time on course correction instead of

moving forward!

To turn theory into practice and experiment with line following, you can use the same

differential drive as in the previous project in this chapter. Remove the bumpers and mount

a light sensor facing down, as shown in Figure 14.6.

272 Chapter 14 ~ Classic Projects

Figure 14.6 The Differential Drive Equipped for Line Following

You can easily swap the ultrasonic sensor for a light sensor, which is attached to the

structure with a long pin. Observing the result, the light sensor is now fairly far from the
floor. The distance of the sensor from the pad is very important. Therefore, you should lower
the attach point for the light sensor so that the sensor is much closer. Our experience
teaches us that for the best results, this distance should fall in the range of 5 m m to 10 mm.

Now that you've finished, you're ready to program and test your robot for line fol-

lowing. If you want to, you can use the Robo tC sample code from Chapter 7, or you can
use some of the references in Appendix A. It shouldn't be difficult to adapt it to the language

of your choice.
Suppose you have succeeded in the task of programming for line following, and you feel

quite happy with the result.You have good reason to, but you should also wonder, as always,
whether you can do anything else to make it better. What could "better" mean in this case?

Probably "faster," along with little to no errors. This is what standard line-following competi-

tions are about: going from one end of a line to the other in the shortest time, and at the

highest speed.
Observe carefully your differential drive in action. When it turns in place to adjust the

course, it makes no progress along the line. This approach gives your robot the capability to

Classic Projects �9 Chapter 14 273

follow a winding line closely with very tight turns, but it isn't very efficient. A first step
could involve changing the course adjustment algorithm to a better one--for example,
making the robot turn with one wheel stopped and the other in motion, instead of turning
with one going forward and the other reversed. Try this technique, and you'll see that your
robot progresses much faster.

We haven't yet mentioned the most obvious improvement~increasing the speed of your
robot! Try different gearings until you find the fastest setup that still allows your software to
keep the course.

Nothing more you can think of?. Imagine yourself standing over a line, straddling it with
one leg on the left side and the other on the right. Now, gazing at the line, you advance one
foot or the other, trying to keep your eyes centered above the line. Do you feel a bit stupid?
We would. This isn't actually what you would do to follow a line in a real situation.You're
not a differential drive.You would rather walk as usual, putting one foot in front of the
other, simply changing your direction without changing your speed.

That's the key: You need something that changes its direction without affecting the
speed. Looking back at Chapter 9 with a different eye, you will discover that the steering
drive and the synchro drive actually share this property of allowing changes in direction
without changing the speed of their driven wheels. The synchro is probably too complex in
gearing to be really efficient, so use the traditional steering drive. If you exclude turns with a
very short radius from your path, proceed with the steering drive architecture that is simpler
to implement.

It's not imperative that a steering drive have four wheels, so ours will actually be a tri-
cycle, because this makes the platform easier to build. Figure 14.7 shows our version of a
steering line follower.

Figure 14.7 A Steering Line Follower

www.syngress.com

274 Chapter 14 ~ Classic Projects

Let's dissect it to understand some of the choices we made, starting with the drive
gearing; you might think this is a bit more complex than necessary (Figure 14.8).

Figure 14.8 Bottom View: The Gearing

Although it is possible to drive the differential from the motor without so many addi-

tional gears, we were looking for an easy way to change the gear ratio without having to

take the robot apart. While you build the robot, you don't know yet at what maximum
speed it will be able to keep following the line. Our solution brings a pair of gears on the
outside of the model at a distance that allows at least three combinations, so it will be easy

to experiment with different speeds (Figure 14.9, versions A, B, and C):

A. 24t 12t (2"1)

B. 20t 16t (5"4)

C. 16t 20t (1-2)

Classic Projects �9 Chapter 14 275

Figure 14.9 These Gears Are Easy to Replace with Different Combinations

Now turn your attention to the front
assembly. It's very simple, and there are lust a
few things worth mentioning. There is a
T E C H N I C pin (3L double) with an axle hole
that makes the fork drivable by the steering
assembly, and several liftarms that hold the light
sensor at some distance in front of the wheel
(Figure 14.10).

Figure 14.10 The Front Wheel Fork Assembly

www.syngress.com

276 Chapter 14 �9 Classic Projects

The front fork is driven by a steering assembly based on a worm gear, a 24t and two
pulleys. As you learned in Chapter 2, the pulley-belt systems prevent any stall situation if the

robot doesn't control the steering wheel properly when the software is not yet fully tested

and debugged (Figure 14.11).

Figure 14.11 The Steering Assembly

Now it's time to program and test the robot. If you wrote the line-following program
for the differential drive, it will work for this robot with a few minor modifications. During
the run, the drive motor will always stay on, while the robot will adjust its course using only

the steering motor, in either forward or reverse direction.
As for the calibration procedure, we suggest that with the robot still and placed on the

borderline, you make it rotate the front wheel slightly left and right to read the min imum

and maximum light values, then compute the average and position the light sensor onto

that. This architecture needs very small hysteresis, or none at all.
Start at slow speed, mounting a 12t gear onto the motor shaft, and when your robot is

able to follow the line properly, try to change the ratio and increase the speed.

The minimum radius that the robot can follow depends on a combination of the forward

speed of the robot, how quickly the turn drive motor can move the steering wheel, and how

far in front of the robot the light sensor is. We encourage you to experiment with these vari-

ables and see how the robot behaves when following lines with turns of different radii.

Classic Projects �9 Chapter 14 277

Further Optimization of Line Following
You should be happy with this line follower. It runs very smoothly compared to the differ-

ential drive configuration. Nevertheless, you might wonder whether you can do anything to

make it run at an even higher speed.
Changing the gear ratio is not enough. There is a large margin for an increase in

speed~it 's not difficult to set up a LEGO N X T robot to run at about 2 m/s (6.5 ft/s). The

problem is keeping the robot on the line.
When you are targeting excellence, the finer details are vital. There is a big difference

between building a robot that "works" and a robot that is optimized for a given task.You
already switched from a differential drive to a steering drive, and this change of architecture

has proven to be a significant improvement, but now you have to dig into the particulars if

you want to gain some additional speed. In working with line following, one of the key fac-

tors is to make the steering fast and accurate. To achieve this, you can reduce the backlash
between the 24t and the worm gear, for example, keeping the steering gently pulled back
from one side with a rubber band. Use a long and soft rubber band, because you don't want
to introduce too much friction; you want to simply keep the teeth of the 24t in contact

with the worm gear, and always from the same side (Figure 14.12).

Figure 14.12 Using a Rubber Band to Reduce Gear Slack

At this point, speed limitations are probably due to the rotation speed of the steering

assembly. This pulley, belt, and worm gear system is safe and accurate, but a bit slow. We leave

you the task of developing a faster steering assembly. It's not very difficult: Try to connect

different pulley sizes to the steering mechanism...

278 Chapter 14 �9 Classic Projects

Now you will meet the last barrier: the reaction time of the software. If you used the

standard firmware, either with NXT-G, RobotC, or other tools, the time it needs to inter-
pret the instructions becomes relevant to the performance of your robot Another very crit-
ical factor is the sampling frequency of the sensors, which is much higher in most
replacement firmware than in the original LEGO one.

Summary
You may not have any interest in the topics covered in this chapter--you may think "What

a bore. I'd like my robots to do more than just follow a black line or run around my room

bouncing against obstacles..."
You're right; there are more interesting activities you can program your robots for, but

these classic tasks help lay the foundation for more complex projects in the future. They reveal
that even apparently trivial projects conceal unexpected difficulties, and we're sure the time
you spend experimenting with line following and simple navigation will indeed pay off in the
end. In this chapter, you also had the opportunity to review many of the tricks learned in this
book and see them at work. We applied the concepts of Chapter 6 to make solid structures

and build two of the most important types of mobile configurations described in Chapter 9:

the differential drive and the steering drive. Naturally, to build these configurations we used the
principles of the first two chapters concerning the geometric relationships of LEGO parts and
the proper use of gears. We recalled the techniques of Chapter 4 about making good bumpers,
about using light sensors for line following, and even about emulating a touch sensor with a
light sensor, and we introduced an important application of the ultrasonic sensor. From
Chapter 7, we took the idea that good code should be as general as possible, and for this
reason we suggested using a self-calibration routine to make your line follower suitable under
any light conditions. Even the math of Chapter 12 had its applications here: kX/e recalled the
idea that hysteresis can improve the efficiency of your robot in tasks such as line following.

Like a thread sewing together most of the topics that we covered in this book so far, the
simple robots of this chapter demonstrated what we've stated on more than one occasion:
Robotics involves many disciplines, and a good design cannot neglect any of them!

Another theme that pervades the chapter concerns the care you should put into the par-

ticulars: Building a robot that works roughly as expected, compared to looking for optimal
performance, are two very different approaches. Obviously, the concept behind the design of
a robot is an important element in regard to its functioning. But even after finding a satisfac-

tory architecture, there is still much work to be done to optimize the subsystems of the
robot. The details, as often happens, make the difference.You will see this prove true in
Chapter 20 and 21, where we will explore the world of robotic contests. Contests are a great

incentive to pursue optimization, the kind of motivation that makes you spend all night
rebuilding a working robot from scratch in search of that little improvement that will make

all the difference!

280 Chapter 15 �9 Building Robots That Walk

Introduction
So far in this book, we have discussed in depth many mobility configurations, all of them
based upon one of the most important inventions of mankind: the wheel. In this chapter, we
will try to emulate what nature invented long before the wheel to provide mankind with a
mode of transportation~legs!

Legged robots are rather impractical for all but a few special applications. However, there
is much to learn in designing and building a walking robot, which is both challenging and
fascinating.

This chapter owes a lot to the great designers who published their creations on the
Internet, and patiently explained their choices through text and pictures, including Kevin
Clague,Yoshihito Isogawa, Joe Nagata, Miguel Agullo, and many others.

The Theory behind Walking
How can one define walking? It's the process of lifting a leg from the ground while the
other legs (one or more) support the body. When the leg has been lifted, it is advanced and
lowered back to the ground. From there, the process continues with another leg, and so on.

The crucial point is this: What prevents a creature from falling down when it lifts its leg?
To discover this, we need to introduce some basic concepts from a branch of physics called
statics, which explains the laws of balance.

The weight of an object is the resulting effect of the force of gravity against the mass of
the object. To describe a force, you need to determine three variables: its magnitude, direc-
tion, and point of application. For example, if you want to move a piece of furniture in your
room, the magnitude is the amount of force you must apply to make it move, the direction
is the bearing of the course on which you're pushing it, and the point of application is
where you place your hands to apply the force. Returning to gravity, its magnitude is pro-
portional to the mass of the object and its direction points vertically downward, but where is
its application point? To answer this question, you should consider an object as being the
sum of a very large number of very small particles, each one having its own mass. The
gravity exerts a force upon every particle, and thus all of them can be considered a point of
application. However, physics teaches that a combination of forces can be interpreted as a
single force~called the resultant~that has its own magnitude, direction, and point of appli-
cation. The resultant force of gravity has a magnitude that corresponds to the weight of the
objects, a direction pointing downward, and a point of application called the center of gravity
(COG) of the object (see Figure 15.1).

Building Robots That Walk �9 Chapter 15 281

Figure 15.1 An Object's Center of Gravity

The force of gravity acts on an object and tries to move its C O G as close to the ground
as possible; this is why objects fall and shift until they reach a stable position. But what
makes a position stable? Statics teaches that a body becomes stable when the vertical passing
for its center of gravity falls inside its supporting base. The supporting base is the surface
whose perimeter results from connecting the supporting points with straight lines. A sup-
porting point is any point on the object that is in contact with the ground or with any
other stable object (such as the floor of your room, or your desk). For example, a book
placed on a table has the whole surface of its cover in touch with the table, and that defines
its supporting base. A table has four legs, each one having a small surface in touch with the
floor: Its supporting base is the area delimited by the legs, which includes points untouched
by the table (see Figure 15.2).

Figure 15.2 The Supporting Base of a Table

www.syngress.com

282 Chapter 15 �9 Building Robots That Walk

Every child learns this rule by experience when building towers of stacked blocks: While
the C O G remains within the supporting base, the tower is stable; as soon as it falls outside

the base, the tower itself falls down (see Figure 15.3).

Figure 15.3 Stable and Unstable Piles of Bricks

Okay, now that we know the rule, how do we find the C O G of an object? For objects
that are symmetrical in shape and density, the C O G coincides with their geometrical center,
but in more complex objects the C O G is not very easy to find, and it is not guaranteed to
be inside the object. A table is again a good example: The C O G of a typical table lies some-
where below its top, as demonstrated by the fact that it has more than just one stable posi-
tion (see Figure 15.4).

Fortunately, we do not need to find the actual position of the C O G of our robot. We
are actually interested in the position of the vertical line that passes through the COG, in
order to see whether it falls inside the supporting base. This is easier to find: If our robot is

mainly symmetrical, this line will pass very close to its geometrical center. Thus, what we

actually need to do is to look at the robot from the top and determine whether the C O G

falls over the supporting base delimited by the legs.

Building Robots That Walk �9 Chapter 15 283

Figure 15.4 The COG of an Object May Lie Outside It

For example, in Figure 15.5, we see a scheme that represents a robot with four large legs
(top view). One of the legs is lifted, and we see that the C O G still falls inside the surface
delimited by the other three legs. And thus, the robot remains stable.

Figure 15.5 A Four-Legged Robot with One Leg Lifted

The same robot can stay balanced even with just two legs, because the C O G still falls

inside its supporting base (see Figure 15.6).

284 Chapter 15 * Building Robots That Walk

Figure 15.6 A Four-Legged Robot with Two Legs Lifted

When the robot advances the two lifted legs, part of its mass moves forward, and the
COG moves forward as well. And because the large contact surfaces of the legs delimit a
zone wide enough to make the moving COG fall within the boundaries (see Figure 15.7),
the robot, again, remains stable.

Figure 15.7 A Four-Legged Robot with Two Legs Lifted and Advanced

When we are using robots with more than four legs, we do not need to rely on their
size anymore. A six-legged robot, for example, can walk with very thin feet provided it
always has at least three of them touching the ground (see Figure 15.8).

On the contrary, when we start reducing the number of legs, things become more com-
plicated. The making of two-legged (biped) robots requires a very careful design. A little
trick is to build U-shaped legs that partly interlace, providing a large support for the robot
(see Figure 15.9). LEGO suggested a similar approach in one of its Idea Books (8891, back
in 1991).

Building Robots That Walk �9 Chapter 15 285

Figure 15.8 A Six-Legged Robot with Three Legs Lifted

Figure 15.9 A Two-Legged Robot with Interlaced Legs

Though this works, it's a bit like cheating! If we want to emulate the way we human

beings walk, we must understand what happens in the human body. Let's do a simple experi-

ment. Stand still, being sure to distribute your weight evenly over your feet. Keep your arms
at your side and keep all your muscles relaxed. N o w slowly try to lift one leg:Your body
tends to fall to that side. While walking under normal conditions, you unwittingly move

your C O G over one foot before lifting the other. This gives you balance and stability and
prevents you from falling.

This is the behavior that we have to replicate to build a true biped robot. We have to

shift its C O G over one foot before lifting and advancing the other (see Figures 15.10 and

15.11).

www.syngress.com

286 Chapter 15 �9 Building Robots That Walk

Figure 15.10 A Biped Robot Standing

Figure 15.11 A Biped Robot Shifts Its COG over One Foot before Lifting the
Other

Actually, the way human beings and animals walk follows not only the rules of statics
but also those of dynamics, the branch of physics that deals with matter in motion. When a
man runs, for example, he is in dynamic balance, producing forces that oppose gravity and
temporarily violate the rules of statics. To understand how this happens, you can study how
you walk, and also look carefully at how animals phase their walking (bipeds, four-legged
animals, insects, and arachnids). For example, elephants and other very large animals lift only
one leg when walking slowly, to keep the static COG within the triangle bounded by their
remaining legs. Once the pace picks up, the opposing gait takes over, which is similar to the
sequence we described in Figures 15.6 and 15.7. Most four-legged animals use this scheme
when trotting. At further increases of speed, such as in galloping, dynamic stability is more
important than static: Only one leg needs to keep contact with the ground, and this allows
the animal to cover more ground with every cycle.

Building a robot that walks or runs using dynamic balance is a very complicated task,
and for this reason, in this chapter we will stay inside the comforting walls of statics.

Building Legs
Whatever kind of walking robot we're going to build, we must find a way to convert the
rotary motion provided by the electric motors into the proper sequence of movements nec-
essary for a leg to work. Animals and human beings use a very complex geometry operated
by an impressive number of independent muscles. We must stick to the constraints imposed
by the M I N D S T O R M S system, thus finding simpler solutions.

Building Robots That Walk �9 Chapter 15 287

Figure 15.12 illustrates an initial idea: a leg mounted on two gear wheels of the same
size, which are then connected in phase through a third gear. It's very important that the leg
attaches to two corresponding holes of the gears; otherwise, it won't work because the holes
will change their spacing as the gears turn.

Figure 1 5 . 1 2 This Leg Always Remains Vertical and Follows a Circumference

By driving any of the three gears, this simple leg will go up and down, forward and
back, always in a circle. The leg always remains vertical. Figure 15.13 shows a slightly dif-
ferent approach, where only one point of the leg is attached to a wheel, and the leg itself
slides freely into a rotating support (fulcrum).

In this assembly, the terminal point of the leg describes an ellipse~a flattened circle--
whose height is equal to the distance between the uppermost and lowermost positions of
the point where the leg is attached to the wheel, and whose length is a function of the dis-
tance between the fulcrum and the wheel. The closer the fulcrum is to the wheel, the longer
the ellipse and, consequently, the stride of the leg will be.You can adjust this distance to
make your robot take longer or shorter steps, affecting its speed. We invite you to experi-
ment with this setup, changing the distance between the wheel and the fulcrum, to under-
stand the effect on the stride. Later in the chapter, we'll use this feature to provide a legged
robot with turning capability.

www.syngress.com

288 Chapter 15 ~ Building Robots That Walk

Figure 15.13 This Leg Describes an Ellipse

More complex leg geometries are also possible (see Figure 15.14). Designing legs is
almost an a r t~ i t requires good intuition, and a lot of patience to test and improve your ini-
tial idea.

Figure 15.14 A Leg with a More Complex Geometry

Building a Four-Legged Robot
Let's start by building a robot with four legs in order to demonstrate the center of gravity
principle explained in Figures 15.5-15.7. The architecture is very simple, and symmetrical:

Building Robots That Walk �9 Chapter 15 289

Keep the COG as close as possible to the center (see Figure 15.15). We built it solely from

NXT parts.

Figure 15.15 Our Four-Legged Robot

Removing the NXT, you'll notice there's a single motor, which through a series of gears
provides motion to the front and rear leg assemblies (see Figures 15.16 and 15.17). However,
notice the phase of the legs" They are diagonally paired. The front left goes together with the
rear right, and the front right accompanies the rear left, which implements the walking
scheme shown in Figures 15.6 and 15.7.

Figure 15.16 Top View (NXT Removed)

290 Chapter 15 �9 Building Robots That Walk

Figure 15.17 Bottom View

The legs follow the scheme of Figure 15.12, where just the gear wheels are inside the
robot, their axles mounted on short 1 x 3 liftarms to which the legs are connected (see
Figure 15.18).

Figure 15.18 The Front Left Leg

Building Robots That Walk * Chapter 15 291

When the robot walks, it lifts two legs diagonally opposed, while standing on the other
two (see Figure 15.19). Even when moving the legs, this robot always remains symmetrical;
thus, its C O G doesn't change position.

Figure 15.19 Front View, the Robot Stands on Two Legs

There's actually not much this robot can do. It's easy to build, and somewhat instructive,
but it's able to go only forward in a straight line, and backward.You can mount two front
and rear bumpers to make it reverse direction, but that's all you can expect from it. To pro-
vide your robot with directional control, unlocking all the opportunities that navigation
affords, you need further sophistication. Let's move on and discuss some more challenging
projects.

Building a Six-Legged Steering Robot
By increasing the number of legs, you can easily make a steering walker. The robot shown in
Figure 15.20 has six legs similar to that in Figure 15.12.

www.syngress.com

292 Chapter 15 �9 Building Robots That Walk

Figure 15.20 A Simple Six-Legged Robot

The left and right leg groups are powered by two independent motors (see Figure
15.21), and in each group the wheels are phased so as to have the middle one raised when
the front and rear legs are lowered (see Figure 15.22).

Figure 15.21 Top View (NXT Removed)

Building Robots That Walk �9 Chapter 15 293

Figure 15.22 The Right Leg Group

This robot turns and walks.You can make it turn by stopping or reversing one of the
motors as though it were a skid steer drive. But it's affected by a serious problem: stability.
The two groups of legs are not synchronized. Because of this, only the central legs are down
at certain times. Because two legs are not enough for a stable balance, the robot tilts forward
or backward a bit, ensuring that the additional legs make contact. As a result, its walking is

rather irregular and jolting.
What could you do to smooth the walking motion? Using two sensors to detect the

position of the legs, you could keep the two groups in sync so that one side goes on the
middle leg only when the other one has two legs down.

There is another approach, more on the hardware side, that requires you to vary the
geometry of the legs to make them change their stride. The left and right leg groups are
connected together and they are powered by a single motor so that the robot is always sup-
ported by a triangle such as that shown in Figure 15.8. To change the stride of the legs, you
have to change the distance of their fulcrums from the gear wheels. The robot in Figure

15.23 uses this technique.
All the legs are powered by a single motor, while the second motor controls the leg

geometry (see Figure 15.24).

294 Chapter 15 �9 Building Robots That Walk

Figure 15.23 A More Sophisticated Steering Walker

Figure 15.24 Top View (NXT Removed)

It's crucial that you connect the six legs in phase so that each side has the middle leg
raised when the other two are down, and the left side has the middle leg down while the
right one has its middle leg up (see Figure 15.25).

Building Robots That Walk �9 Chapter 15 295

Figure 15.25 Three Legs Are Always in Contact with the Ground (Side View)

The fulcrums of the legs are attached to a swinging chassis that the second motor can
incline on one side or the other (see Figure 15.26). The stride of the legs becomes shorter at

the side where the fulcrums have been lowered, and longer at the other, thus making the

robot turn.

Figure 15.26 Rear View

www.syngress.com

296 Chapter 15 �9 Building Robots That Walk

The front and rear sides of the swinging chassis are operated through a long joined axle

that is connected by a motor at the back of the robot (see Figure 15.27).

Figure 15 .27 Bottom View

This robot needs no sensors to control its motion. When you want to make it turn,
switch the motor on to the desired direction for a second to change the geometry, and then
brake it to hold it in position. Recall that floating the motor might allow the swing chassis
to turn. To resume straight motion, let the motor float and the swinging chassis will return

to its central positions after a few steps.
The limit of this architecture is that the robot will turn only with a very large radius. It

will be able to follow a line only if this doesn't make tight angles~a right angle, for

example.
To give high maneuverability to your robot, you must remain with a skid-steer type

drive, possibly increasing the number of legs to improve stability.

Designing Bipeds
Biped robots are among the most challenging projects we face. In a biped, the position of
any single part, any single gram of mass, is critical to a stable balance. If you replicate the
designs that follow, you will see that all of them walk quite smoothly, but you will also dis-

cover that you can't add additional parts anywhere in their body and not feel the pain!

Building Robots That Walk �9 Chapter 15 297

We will go through the approaches described in the section "The Theory behind
Walking," earlier in this chapter: interlacing legs (Figure 15.9) and COG shifting (Figure
15.11). For the latter category, we will explore a technique that requires that the whole body
of the robot bend at the ankles to move the COG over a foot. In addition, there is also a
technique (not described here) where an independent mechanism moves a mass from one
side of the robot to the other to change the position of its COG.

At the end of the section, we will give you some tips about the next step in the chal-
lenge: the making of a biped robot capable of turning!

Interlacing Legs
Let's start with a biped based on the technique shown in Figure 15.9 using interlacing legs.
The feet must be U-shaped and large enough to support the weight of the whole robot (see
Figure 15.28, NXT MINDSTORMS parts only).

Figure 15.28 A Biped with Interlacing Legs

iiii ...

............. ~i!iii~!ii!!!ii~!i~iiiiiiiiiiiiiiiiiiiiiiiiiiiii~iiiiiiii~iiiiiiiii~iiiii!ii~ii '~'~'~'~'~ :giiii!ii!!,~l!i~,~,~,,,~ i ! !
ii{iii!~ii~!~;~ '~:~%!}i!7 :~:>: :;;!ii4;ii: iii

~i~!~%iii!!!iiiiii!i!iiiii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

..,~:~,~

This robot uses a simple gearing, only an 8t and a 40t gear. The axle of the 40t connects
to two opposing liftarms that operate the legs. The motor shaft has been prolonged with an
axle (see Figure 15.29).

www.syngress.com

298 Chapter 15 �9 Building Robots That Walk

Figure 15.29 Top View (NXT Removed)

The leg geometry is very similar to the one in Figure 15.14, but here we used a double
series of parallel beams in order to form two connected parallelograms, an upper (body to
knee) and a lower (knee to foot) one (see Figure 15.30). Making this allows the foot to
always remain parallel to the body, and thus the body always parallel to the ground.

Figure 15.30 The Left Leg

Building Robots That Walk �9 Chapter 15 299

When you look at the robot from the bottom, it's easy to see how the feet interlace with

each other (see Figure 15.31).

Figure 15.31 Bottom View

In our current design, the feet rest flat on the ground (see Figure 15.32). On other
designs similar to ours, the feet are not fiat. Nagata's Walker ND 1 (see Appendix A), for
example, has protrusions at the end of each inner tip of the feet (two on each feet). These
tips compensate for the slackness of the leg that otherwise would make the robot lean at the
side of the lifted leg, causing the C O G to move beyond the base and make the robot fall. A
similar feature is also observed on the interlacing-leg bipedal robot described in our R C X
publication, although it only uses a thin plate instead.

Figure 15.32 Front View

300 Chapter 15 �9 Building Robots That Walk

COG Sh ifti ng
We will describe an approach to COG shifting of a walker by way of bending its ankle side-
ways in order to carry the COG over to the resting foot. The robot in Figure 15.33 uses this
technique:You'll notice that the right leg inclines outside and that the NXT rests over the
foot.

Figure 15.33 An Ankle-Bending Walker

We used the leg designed by Miguel Agullo for his very nice Hammerhead (see
Appendix A). The key component of the ankle is a crankshaft that manages the bending of
the leg over the foot (see Figure 15.34). It looks pretty funny as it walks, lurching from side
to side.

Building Robots That Walk �9 Chapter 15 301

Figure 15.34 Detail of One Foot

The hips are free to swing back and forth, and their supporting axle serves to also

transfer motion to the ankle with a technique similar to what we described for the making

of synchro drives or front wheel drive cars (see Figure 15.35). A second axle at the rear pro-

vides motion to the legs, through two crankshafts and two liftarms.

Figure 15.35 Top View (NXT Removed)

www.syngress.com

302 Chapter 15 �9 Building Robots That Walk

This walker uses a single motor and two worm gear and 24t pairs (see Figure 15.36'

Figure 15.36 Bottom View

The difficulty of this model lies in finding the proper synchronization between ankle
and leg movements. If you decide to give this technique a try, we suggest you follow
Miguel's detailed instructions on his site (see Appendix A) to replicate his geometry.

This ankle-bending model is not completely symmetrical, and it can walk for-
ward only. Its COG lies in f ront of the hip joint, so the robot tends to lean
forward and transfer its weight from one leg to the other as it is advancing.
If you run it backward, it wil l fall.

Making Bipeds Turn
Is it possible to make a biped robot turn? It is, though it's definitely not an easy task. Once
again, we invite you to experiment for yourself to find a working strategy. Observe your feet
while you walk slowly, taking short steps and going straight: One foot is ahead of the other,

Building Robots That Walk �9 Chapter 15 303

but they remain parallel, as if they were running on tracks. Now try to change direction, but
only take the very first step. If you look at your feet again, you notice that they are no
longer parallel: The foot that's ahead is pointing in the new direction.

How can you emulate this behavior in your robot? We can do this by modifying the
long legs utilized by either one of the bipedal architectures described here. The ankle-
bending robot (Figure 15.34), for example, uses a 1 x 15 beam as its primary building piece
for its leg construction. If, instead, it is replaced with two 1 x 7 beams connected with a
joint that can vary the angle between the two beams, the legs can slightly converge or
diverge.You will need a second motor to control the parallelism between the legs, and prob-
ably a third sensor to detect the straight position.

Summary
In this long chapter, we covered, hopefully, all of the most important aspects about the
making of robotic walkers. Along the way, we discussed some important concepts, such as
the center of gravity, that will prove useful in many other applications.

If you had the impression that we talked a lot about mechanics and not much about
software, you're right. The task of balancing the weight over the legs is by itself so
demanding that not much space remains to make your robot perform other actions.
Although we showed some possible basic behaviors such as line following, more complex
tasks such as grabbing objects are usually beyond the scope of walking robots due to the
changes brought about regarding their delicate balance. Precise navigation is also not very
suited to walkers, because the natural tendency of their legs to skid a bit on the floor makes
them somewhat unreliable for positioning.

However, all this shouldn't keep you from experimenting with walkers. The pure reward
of seeing them move compensates for all the effort put into building them. And who knows,
in your enthusiasm you could develop some new solutions, or maybe design something as
complex as a running robot!

This Page Intentionally Left Blank

306 Chapter 16 �9 Robotic Animals

Introduction
Trying to emulate animals in form and function with LEGO's M I N D S T O R M S N X T is a

fun and instructive experience.You can approach the problem from different viewpoints
for example, concentrating your attention on the behavior of the animal, or on its shape; you
can even create a pure fantasy animal or develop your own interpretation of some mytho-

logical creature.
In the following pages, we will discuss two robot projects: a monkey and a mouse. The

robot monkey will try to emulate the swinging capability of real primates. Its function is to

go hand over hand across a pole, dowel, or broom handle. The robot mouse is intended to be

a roaming platform capable of performing multiple tasks. Like real mice, this robot has a

playful nature as well.
Once again, the robots in this chapter will offer us the opportunity to revise and apply

some of the concepts stated in the first part of the book.You will use a split gearbox to
power the monkey's shoulders. The mouse, meanwhile, will use a large ball through which

we will implement a sort of automatic steering feature.
The last section of the chapter contains a list of proposals intended as starting points for

new projects inspired by the world of animals: squirrel, mole, ostrich, kangaroo, crab--take

your pick!

Creating a Monkey
Our M I N D S T O R M S N X T monkey will need something to climb across. We recommend
that you place a broom or similar object across two chairs. This will be the tree branch across

which the monkey will be able to move back and forth. For the monkey to "see" his target
point, you will have to drape a towel off the edge of the right chair, thereby providing the
ultrasonic sensors a target that they can "see." Your monkey will start on the left end of the
broom handle and cross to the right. When he gets to the right side he will see the chair,
turn, and then, because he has been counting the number of swings required to get to that
point, he will go back across the broom handle to the point where he began. Figure 16.1
shows a model of a fully assembled monkey. Now let's go through the step-by-step process

of creating your monkey.

Robotic Animals �9 Chapter 16 307

Figure 16.1 A MINDSTORMS NXT Monkey

Step 1" Center Motor Assembly
The center motor (see Figure 16.2) will drive the two rotating arms of your monkey.You'll

need the following parts for this step"

�9 lx Motor

�9 2x Pin with friction

�9 2x Axle joiner perpendicular with two holes

�9 4x Pin long with stop bush

�9 2 x B e a m 1 . 1 5

308 Chapter 16 �9 Robotic Animals

Figure 16.2 The Center Motor

Step 2" Shoulder Assembly
When assembling the shoulder, you can use twin axles to power two functions. To transfer

power through two 90-degree angles and to add torque we will use the worm gears and a

pair of 24-tooth gears. This reduces load on the motor and gives the monkey the needed

muscle to swing from its arms.You'll need the following parts for this step:

�9 4x 1/2 Bushings

�9 2x Worm screw gears

�9 2x Gear 24 tooth

�9 2x Axle joiner perpendicular with two holes

�9 2xAxle 12

�9 4x Triangles

�9 4x Axle three with stud

�9 2x Axle 8

Figure 16.3 is an example of what your monkey's shoulder will look like.

7

www.syngress.com

Robotic Animals �9 Chapter 16 309

Figure 16.3 The Monkey's Shoulder

Step 3" Shoulder/NXT Brick Bracing
For this step, you'll need the following parts:

�9 1 x B e a m l x 1 1

�9 lx Joiner perpendicular 1 x 3 x 3 with four pins

�9 2 x B e a m l x 1 5

�9 4x Axle pin with friction

�9 l x B e a m l x 5

�9 8x Pin long with friction

�9 2x Axle joiner perpendicular with two holes

�9 2x Joiner perpendicular 3L

�9 2x Bush

Figure 16.4 shows the shoulder /NXT brick bracing.

310 Chapter 16 �9 Robotic Animals

Figure 16.4 Shoulder/NXT Brick Bracing

Step 4" Shoulder-to-Arms Support
For this step, you'll need the following parts:

�9 3 x B e a m l x 1 1

�9 2x Bush

�9 9x Pin long with friction

�9 4x Axle joiner perpendicular

Figure 16.5 shows the shoulder-to-arms support.

Robotic Animals ~ Chapter 16 311

Figure 16.5 Shoulder-to-Arms Support

Step 5" Arm Motors
The arm motors (see Figure 16.6) will power your monkey's hands.You'll need the fol-
lowing parts for this step:

�9 2x NXT motor

�9 4x Pin long with friction

Figure 16.6 Arm Motors

r �9

www.syngress.com

312 Chapter 16 �9 Robotic Animals

Step 6" Monkey Fingers
Monkey fingers are powered by your N X T motors. They use gear reduction for torque.

With 3:1 reduction, you can give your monkey a grip so that he can hold on to the broom

handle.You'll need the following parts to assemble your monkey's digits (see Figure 16.7)"

�9 2xAxle 10

�9 2x Gear 20-tooth double-bevel

�9 4 x B e a m l x 3

�9 8x Pin long with friction

�9 4x Axle 7

�9 4x Gear 24-tooth

�9 16x Liftarm 1 x 7 bent

�9 14x Axle 3

�9 4x Gear 8-tooth

�9 4x Liftarm 2 x 4 L-shape

Figure 16.7 The Monkey's Fingers

www.syngress.com

Robotic Animals �9 Chapter 16 313

Step 7" NXT Brick
Backbraci ng a nd U Itrason ic Sensor
You'll need the following parts for this step (see Figure 16.8):

�9 lx N X T brick

�9 2-Lis bent 2 x 7

�9 2x Axle pin with friction

�9 2x Axle joiner perpendicular double split

�9 lx Utrasonic sensor

�9 4x Liftarm double bent

�9 2x Axle pin with friction

�9 2x Axle joiner perpendicular double

�9 l x Liftarm 3 x 5 L-shape

�9 12x Pin with friction

�9 2x Pin long with stop bush

Figure 16.8 NXT Brick Backbracing and Ultrasonic Sensor

The Final Step" Wiring Your Monkey
Set up your monkey's wiring by facing the N X T brick toward you. The wire for the left

arm is labeled "A", the one for the center shoulder motor is labeled "B", and the one for the

314 Chapter 16 �9 Robotic Animals

right arm is labeled "C". Connect the ultrasonic sensor on port 4. Use the 20-tooth gears as
tuning knobs to adjust the fingers when attaching them to the broom handle. Have both of

your monkey's hands grip the handle to start. Tune the shoulders at the worm gear axle so

that when you are facing the N X T brick, the right arm motor is on the side of the N X T

brick that is facing you. Adjust this until the motor's 1 x 3 beam touches the bracing. Do

not overtighten it. Adjust both hands so that they are closed over the handle. When the

hands are in a gripped or closed possition, they should be at about 90 to 100 degrees from

the vertical arm motors. If you have your monkey high up on something, protect him from

acidental falls by using a tether line.

Programming Your Monkey
To program your monkey you will use a few of the more advanced features of the NXT-G:

namely, Logic and Compare blocks, using data wires to send information. This will give your

monkey the intellect to count how many swings he made, so he can go back to the start.

Figures 16.8 and 16.9 show the NXT-G code required for this application. Because

NXT-G code is written in a horizontal fashion, it makes it difficult to display in publications

such as this, so we have broken it into two chunks for ease of reading.

Most N X T programs are built within a loop, which keeps the program running.You can

stop the program in a variety of ways. In this program, you will need to press the N X T

Stop b u t t o n (the gray square below the orange one).You can add a sound sensor and write

some code to trigger the monkey to stop when you clap your hands.
Figure 16.9 shows our monkey program. We started by adding a loop block set to exe-

cute forever. We placed two more loop blocks inside the main loop, then set both loops using

logic and a counter. In the second loop, we placed a compare block (see Figure 16.10), and set it
to equals. What will this do? The compare block will count the loops of the first loop block.
The compare block remembers the count. When the ultrasonic sensor tells the first loop to
exit, the second loop block knows how far it has to go back to reach the point where the

monkey started in the second loop block.

Figure 16.9 The NXT-G Code for Your Monkey's Program

Figure 16.10 The Monkey's Compare Block

Robotic Animals �9 Chapter 16 315

Now let's look at the ultrasonic sensor blocks and the logic block. For this application, you

will use two ultrasonic sensor blocks. This technique could be used by different sensors or

mixed sensors as well.You need to use two because the monkey makes a swinging motion in

a right-to-left and left-to-right pattern For every loop.You don't want the monkey to miss

an object and run into a tree! Connect both ultrasonic sensor blocks to the logic blocks' A and

B hubs. Connect the result hub of the logic block to the end of the first loop. Set the logic

block to Or. Now, if one or both of the ultrasonic sensor blocks detect an object in front of

them, this information will tell the first loop to exit.
You will notice that there is one motor move block at the beginning of" the program. This

is telling all motors to brake on the A,B,C ports. This is so that when you place your
monkey on the broom handle, it will hold on while things get going.

When you write a program it is a very good idea to test it before use. This robot has
built-in stands (or legs) that Facilitate the testing process. Test the Functionality of all the
motors at 50 percent power. A good test should work like this: Starting with both monkey

paws closed, the right hand will open, the shoulders will rotate, the right hand will close, the

left hand will open, the shoulders will rotate, and the left hand will close. This will repeat

until you place your hand in Front of" the ultrasonic sensor, which will cause the monkey to

perform the same motion, but in reverse. Test it and count the number of loops; notice

whether the monkey goes back the same number of loops as it moved Forward. If this

works, the monkey is ready for action! Now set the motors to 100 percent and the monkey

should be ready to swing.

316 Chapter 16 �9 Robotic Animals

Creating a Mouse
The mouse is a fast and timid creature. It is always on the lookout for danger. Our mouse

has no legs, but it uses wheels and a ball castor for speedy turns and quick getaways. It has

ultrasonic eyes that can see in the dark, and a microphone nose that hears the screams of

startled people. His tail is a touch sensor; when you touch the tail, the mouse will scurry

around (see Figure 16.11).

Figure 16.11 A Robotic Mouse

Step 1" Mouse Frame and Motor Assembly
For this step you'll need the following parts"

�9 2x N X T motor

�9 2x N X T rim

�9 lx Beam 7

�9 2x Beam 9

�9 2x Beam 15

�9 5x Axle 3

�9 2x Axle 6

�9 2x Pin long with stop bush

�9 lx Touch sensor

�9 14x Pin long

�9 2x Axle pin with friction

www.syngress.com

Robotic Animals �9 Chapter 16 317

�9 2 x A x l e j o i n e r perpendicular 3L

�9 2x Beam 15

�9 3x Pin with friction

�9 4x Bush

�9 2x Liftarm double-bent

�9 2x N X T tire

�9 2x Pincer Suukorak

�9 5x Axle joiner perpendicular 1 x 3 x 3 with four pins

�9 6x Liftarm bent 7

�9 2x Axle joiner perpendicular

�9 2xAxle 10

�9 2x Axle 5

Figure 16.12 shows the assembled flame and motor.

Figure 16.12 The Mouse Frame and Motor

www.syngress.com

318 Chapter 16 ~ Robotic Animals

Step 2" Castor Bottom
For this step you'll need the following parts:

�9 2x Long pin

�9 4x Axle pine with friction

�9 2x Pincer Suukorak

�9 6x Pin with friction

�9 2x Beam 7

Figure 16.13 shows the assembled castor bottom.

Figure 16.13 The Castor Bottom

Step 3" Tail Assembly
If the tail is too heavy for your touch sensor, shorten it by removing a few of the liftarms

used in this assembly.You'll need the following parts for this step:

�9 4x Liftarm 7 bent

�9 lx Pin long with bush stop

�9 2x Axle 2

�9 lx Axle pin with friction

�9 2x Liftarm 2 x 7 bent

www.syngress.com

Robotic Animals �9 Chapter 16 319

�9 lx Pin long with friction

�9 l x A x l e j o i n e r perpendicular 3L

�9 lx Double bend

�9 8x Axle 3

�9 2xAxle jo ine r perpendicular

Figure 16.14 shows the assembled tail.

Figure 16 .14 The Mouse's Tail

Step 4" The Mouse Head Frame
We must add a special note here: The 3 x 5 liftarm should be connected to the N X T brick

through the #3 and #15 beams.You will have to lift the #15 beam up one hole to set it

with the long pin. This gives the frame a slight preload. For this step you'll need the fol-

lowing parts:

�9 2x Beam 15

�9 2x Liftarm 3 x 5

�9 2x Pin long

�9 4x Beam 3

�9 28x Pin with friction

�9 2x Gear 24-tooth

www.syngress.com

320 Chapter 16 �9 Robotic Animals

�9 2x Liftarm 2 x 4

�9 4x Axle pin with friction

�9 2x Axle 3

Figure 16.15 shows what the assembled mouse head flame looks like.

Figure 16.15 The Mouse Head Frame

Step 5" Motorized Mouse Head Assembly
The mouse head is designed to move up and down; this feature mimics a mouse's inquisitive

nature and adds to its form.You'll need the following parts for this step"

�9 lx N X T motor

�9 l x A x l e j o i n e r perpendicular

�9 double split

�9 lx Pin joiner dual perpendicular

�9 8xAngle connector #6

�9 2x Gear 24- tooth

�9 4x Gear 8- tooth

�9 6x Axle pin with friction

�9 lx Ultrasonic sensor

�9 3x Beam 3

�9 4x Liftarm 3 x 5

�9 2xAxle 12

www.syngress.com

Robotic Animals �9 Chapter 16 321

�9 9xAxle 2

�9 5x Pin long with friction

�9 lx Sound sensor

�9 l x A x l e j o i n e r perpendicular

�9 double

�9 2xAngle connector #1

�9 9x Axle 2

�9 2x Gear 24- tooth

�9 8x Pin with friction

Figure 16.16 shows what the motor ized mouse head looks like.

Figure 16.16 The Motorized Mouse Head

Step 6" Mounting the Mouse Head to the Body
W h e n wring the mouse, port A is for the mouse head assembly motor; ports B and C are

for the motors to wheel motors; port 4 is for the ultrasonic sensor; port 1 is for the touch

www.syngress.com

322 Chapter 16 �9 Robotic Animals

sensor; and port 2 is for the sound sensor. Place one of the two large balls provided with the

N X T set into the mouse's front paws for steering capability.You'll need the following parts

for this step:

�9 2x Beam 5

�9 2x Bush

�9 lx Large ball

Figure 16.17 shows what you'll see when you have mounted the mouse's head to its body.

Figure 16.17 The Mouse's Head Mounted to Its Body

Step 7"A Programming Example
Because much of the form of our mouse is in its action, the program will have some actions

that give the mouse robot more of its character. This example has some of the logic and com-
pare blocks we discussed earlier. Compare blocks are very useful in terms of turning. Logic is

needed to make a decision, or in this case, to use two sensors to activate the same operation

or multiple functions.

This program is inside a loop block like the one we discussed earlier in the chapter. Here

again, you start by placing a loop block that is first set to Forever (infinity). All your code

blocks will be placed within this loop.

Take a look at Figure 16.18. This code segment represents the "character" part of the

mouse, but we will use it in other parts of the program as well.You see here that a touch

sensor and a sound sensor are wired to a logic block. Set the logic block to OR. Wire the logic
block to the switch block and set it to value~logic. (This could have been done just by making

the switch block a touch or sound switch block. But then it could not do both. This is one

Robotic Animals ~ Chapter 16 323

reason why a logic block is so useful.) The switch block (Figure 16.18) is set toflat view
because the bottom line is empty and is coded only in the top section. This makes the code
easier to read and follow. As a result of this code, if the touch or sound sensor is activated, it

will use the top code of the switch block. If not, nothing will happen because the bottom

section of the block has no code.
In the next segment (Figure 16.19), start by placing a switch block in the ultrasonic

sensor mode to the right of the last segment; use 12 inches for the setting here. The top

code of this switch block is the drive-forward code within your character code. The character

code makes the mouse's head move up and down and turn left and right.You can add

sounds to give the mouse an "on the run" feeling.
The bottom section of this switch block is the turning segment with the character code

as well. Start by placing a motor move block (B/C=Stop). This will brake the mouse before it

runs into a wall. Now place another switch block set to Value~Logic~True. Place the touch and

sound sensors wired to the logic block and to the switch. The upper part of this switch has

the same character code as before.
The bottom of this switch is the part of the program that directs the mouse to turn left

and right. As the mouse approaches a wall, it stops, and then looks left and right. The ultra-

sonic sensor is measuring the distances and sending this data to the compare block. The larger

value represents the direction of travel, as handled by the next switch block. Only the top

section has code. If the value of one direction is greater than the value in the switch block,

the mouse is already facing that direction. If the value of the other direction is greater than

in the switch block, the mouse turns and the program starts again.
If you have a dog or cat, it probably will enjoy playing with the mouse robot. Be careful

with dogs, as they tend to like mouse robots a little too much and may bite them. Also, note

that you can program this robot to perform other tasks. For instance, you can make it follow

lines, sounds, or light.

Figure 16.18 Programming Your Mouse's Character

324 Chapter 16 �9 Robotic Animals

F igure 16.19 Programming the Switch Block for Your Mouse

Creating Other Animals
Nature is a wonderful source of inspiration, and you can collect tons of great ideas just by
browsing through books about animals.You can use insects and spiders as templates for mul-

tilegged walkers; other creatures higher on the evolutionary scale present an incredible range
of shapes and behaviors. Take your pick.

Matching shape to function is almost an art. Even our simple monkey required many
trials before we felt satisfied with its design. The following list provides some examples of
what you can make. Keep in mind that many other creatures which are at least as interesting

and challenging as these are just waiting for you:

�9 A squirrel This robot would collect 2 x 2 bricks as though they were nuts, and

perhaps bring them back to its hole (difficult).

�9 An os t r i ch It won't bury its head in the sand, but it can hide its head between its

legs.

�9 A kangaroo We like the challenge of designing a jumping robot, but so far we

haven't succeeded. The idea was to implement a sort of spring or rubber band

mechanism that, when slowly loaded by a motor, could release its energy all at

once, thus making the kangaroo jump. We conducted a few experiments, and

Robotic Animals �9 Chapter 16 325

although our prototype actually skipped and advanced a bit, we didn't consider it

fully successful. It's still an open challenge?

�9 An a r m a d i l l o This would roll up like a ball when disturbed.

�9 An oyster Even a simple animal such as this offers some ideas. For example, you
can build one that closes its shell very quickly when someone steals its pearl, and

the game could be to try to remove the pearl without being touched by the shell.

�9 A d i n o s a u r This category includes such a broad variety of creatures that you

shouldn't have a problem finding one to emulate.

�9 A p o r c u p i n e or h e d g e h o g This one could raise its quills (axles) when detecting

a stimulus.

�9 A crab o r l o b s t e r This type of robot would clamp down on everything that

touches its claws.

�9 A k o a l a This would climb a tree (you'd probably need a specially shaped LEGO

tree for this one?).

�9 A m o l e This would be a dark-seeking robot that looks for the darkest places in

your room, presumably under a piece of furniture, and rests there until light dis-

turbs it.

With additional M I N D S T O R M S N X T sets you could model two or more animals of

the same type so that they can cooperate with each other as they perform certain tasks; for

example, ants. Or you could model animals of different types so that one hunts the other,

which tries to escape. In addition, you could build a mul t i -NXT animal robot that could

have many more functions.

Summary
In this chapter, we discussed how to design a robot based on existing creatures. In addition

to technical issues, you have to face the difficulties that come from the need to match shape

to function. In fact, in previous chapters, we concentrated on solving technical problems

without introducing concerns about the size or appearance of our robots. However, you

cannot emulate animals without carefully studying the shape of the robot; actually, that is the

most important factor, and it's what makes your robot look like an animal instead of a

vehicle. Decisions about the appearance of a robotic animal usually come before any other

mechanical choice, and they will push you to look for technical solutions that suit your

desired structure. Sometimes you will find them and will be able to carry out your original

design; other times you will have to introduce some adaptations into the structure to make a

mechanical solution possible.

326 Chapter 16 �9 Robotic Animals

The monkey and~mouse described in this chapter are good examples of this approach.
One of our goals in building the monkey was to build it with the strength it needed to hang

on to a branch (represented by a broom handle). This led us to use various gear systems to
drive its shoulders and hands.

The mouse project started with a different premise: The robot had to be mobile and fast.
When making shapes from beams, we are confined to angles that may not emulate the real

shape of a mouse. But it can have a degree of similar appearance. Much of the character of

the mouse, then, is evident more in its programming.

Having stated the importance of shape when emulating animals, we don't want you to

think that shape is the only thing that counts.You should take into account what you

learned in previous chapters, paying particular attention to the strength of the structure, the

gear ratio of the mechanisms, and the effectiveness of the sensors.
As for programming, start with a simple program and test it for function. It is best if

your first programs have power settings that are as low as possible. This way, you can be sure

the program will function the way you intend. If you have a problem that causes binding, or

a mechanical issue that results in limited travel, you can stop the program and change certain

parameters. Once you have a simple program that functions correctly, you can add more

complexity one step at a time, which will make the program much easier to debug later.

The last lesson to remember from this chapter is that by studying and observing animals,

you can learn many tricks that are useful to robotics. Remember : Form and function are a

balancing act of engineering. Animals provide endless inspiration when it comes to chal-
lenging robotic projects!

r

www.syngress.com

328 Chapter 17 �9 Solving a Maze

Introduction
Humankind has always been fascinated by labyrinths, and mythology is crowded with heroes
busy finding their way out of mysterious buildings. It was not unusual for large European
18th- and 19th-century villas to have a hedge labyrinth in their gardens. Indeed, mazes of

different varieties are still common in the amusement parks and games of our era.

The ability to find your way through a maze is considered a good test of intelligence

and has been used with mice and other animals to measure their capacities. Now the time

has come to test your robots too!
Before building robots capable of solving a maze, we must understand what "solving a

maze" means. In other words, we must understand what knowledge and skills are necessary

to find the way out. If you ask anybody to solve a simple maze drawn on a sheet of paper,
he will probably do it very quickly. But if you ask him to describe the procedure he used, you
will likely receive some very generic explanations. This happens because human beings tend

to ignore the details of what they do: They employ the knowledge and experience accumu-

lated throughout their lives~especially during their ch i ldhood~wi thou t realizing that such

a simple action actually hides a multitude of operations. If somebody were to stop you on

the street to ask for directions, would you explain to her what "turn" and "left" mean?

Surely not. However, in regard to robotics, there's no background knowledge you can take

for granted. We explained in Chapter 14 that even an apparently easy task such as moving
around the inside of a room or detecting obstacles requires a thoughtful analysis of the envi-

ronment and of its interactions with your robot.
This is also the kind of analysis necessary to implement maze solving:You need a

strategy, and it has to be detailed enough to be translated into program instructions for your

robot. For this reason, we will begin exploring some theories about maze solving, which will
lay the foundations for the projects that follow.

On the hardware side, the robots that you will come across in this chapter don't require

more parts than what you find in your M I N D S T O R M S N X T box. As well as teaching
some concepts about maze solving, this chapter will also strengthen your skills in working
with touch and light sensors, consolidating ideas that appeared in Chapter 4.

Finding the Way Out
Even a simple maze, the kind you can solve in a few seconds with a pencil if you see it
printed on a sheet of paper, assumes a completely different perspective when you are inside

it. If you don't have any external reference point and are not allowed to take note of your

moves, well, be prepared to spend a few hours!

How can external references or note taking help you find your way out of a maze?
Because they help you understand where you are. To introduce this concept, we invite you
to perform an experiment:You need a friend who will play the role of the robot inside the

Solving a Maze �9 Chapter 17 329

maze, while you simulate the sensors that return information about the environment around
him.Your friend must find the exit from the maze of Figure 17.1 without actually seeing the

picture, and only by using your verbal feedback. He can use only four commands inside the
maze to direct himself." forward, back, right, and left.You track his position in the maze with
a pencil, and if his command is acceptable~that is, if the desired direction doesn't come up

against a w a l l ~ y o u move the pencil to the specified adjacent square, answering "OK"; oth-
erwise, you keep the pencil stationary and answer "wall."

F i g u r e 17.1 The Test Maze

Will your friend be able to exit the maze under these conditions? Probably yes, but only
after a long time, and with an effort that seems enormous when compared to the simplicity
of the maze. In the second phase of the experiment, provide your friend with a square sheet
and a pencil so that he can log his movements. When you answer "OK," he will move his
pencil to the adjacent square and mark it as "visited," and when you answer "wall" he will
remain in the same square, but will mark the specified side of his square with a line which

represents the wall. Now things will go much more smoothly for your friend: Looking at his

map, he can avoid visiting the same location more than once, sparing himself many "colli-

sions" and exploring all possible routes until he finds the way out.

Some of you may have noticed that the aids mentioned pertain to the two basic cate-

gories described in Chapter 13 regarding knowing your position: absolute and relative posi-

tioning. In fact, the use of external reference points represents an application of absolute

pos i t ion ing~you use landmarks to locate yourself~while note taking has many similarities
with relative positioning:You deduce your new location knowing the direction and the dis-
tance you covered from the previous location.

www.syngress.com

330 Chapter 17 �9 Solving a Maze

Finding one's way in a labyrinth is, in fact, a special case of navigation and requires sim-
ilar abilities, with the addition of some memory to remember which branches have already
been visited. In our previous experiment, the memory was symbolized by the sheet of paper
where your friend logged his moves.

Thus, generally speaking, to solve a labyrinth, your robot should be equipped with a
navigation system and a map in its memory. There are some notable exceptions, such as
labyrinths that simply require slavish application of a rule to lead you to the exit, which

could be handled by robots with less demanding equipment.
The strategies we are going to explain work with fiat mazes~not just the ones you can

draw on a piece of paper, but any labyrinths that can be represented on a piece of paper. For
example, hedge and crystal labyrinths usually belong to this category provided that they

don't contain any bridges or tunnels.

Using the Left Side-Right Side Strategy
The left side-right side strategy solves an incredibly large class of mazes, its rule being quite
simple to remember and apply. It states that, when applicable, if you follow the left wall and
turn left whenever possible, you will find the exit. Easy, isn't it? You're not guaranteed to
cover the shortest distance, but you are guaranteed to find the way out. Actually you can just
as easily keep to the right side, the two methods being complementary and leading to the
exit along different paths. We invite you to test the rule on the simple maze of Figure 17.1.
Imagine physically entering the maze and then trying to follow the left wall~eventually,
you arrive at the exit. Now try again, this time following the right wall. Again you reach the
exit, but from a different route (see Figure 17.2).

Figure 17.2 Following the Right and Left Walls

Solving a Maze �9 Chapter 17 331

To be more precise, if you follow the right wall, you use the same route you would if

you followed the left wall from the exit to the entrance.
This strategy has a great advantage in that you need not know anything about your posi-

tion and orientation. The only capabilities required are that your robot can follow a wall and

that it can recognize the exit when it's there.
At this point, the crucial question is, when can you apply this rule? There are essentially

two cases in which you can do this:

�9 When the maze is fiat, and has both the entrance and the exit placed along its

perimeter (as in Figure 17.2).

�9 When the maze is fiat, and the entrance and exit are points arbitrarily chosen any-
where in the maze, where the latter doesn't contain any loops. That is, it doesn't

contain multiple paths that connect any two points (see Figure 17.3).

F i g u r e 17.3 The Exit Is Inside a Maze with No Loops

This rule covers many practical cases. However, it doesn't work when the entrance and
exit are not along the perimeter and the maze contains loops, as in Figure 17.4. Notice that

the route covered following the left wall brings you back to the entrance without reaching

the exit point.

332 Chapter 17 �9 Solving a Maze

Figure 17 .4 The Exit Is Inside a Maze with Loops

Applying Other Strategies
W h e n you cannot apply the rule previously stated, you can rely on two strategies:

�9 Executing random turns

�9 Tracking your route

The first strategy says that whenever you find yourself at an intersection, you decide

which way to go at random. Though this method is guaranteed to find the solution sooner

or later, that "later" can be a very, very long time if the maze includes more than a handful

of intersections?
The second approach solves the more general case of mazes with more than a few inter-

sections, but it requires two valuable ingredients: a position control system and a memory.

You must be able to recognize each intersection and mark the branches already explored so

as not to explore them again. The right-side rule can still be useful as a basic rule, but when

you find yourself in a place you've already been, you must be able to backtrack to the first

intersection with unvisited branches and take one of those.

We imagine you already see the difficulties in this:You must provide your robot with an

affordable navigational aid and an inner map to represent the maze so that you can mark the

visited corridors. Fortunately, with the new MINDSTOP, .MS N X T servo motors and

P, obotC, this mission is not so difficult.

But let's start with something simpler. We designed the first robot of this chapter, the

Maze Runner , to apply the left-side rule inside a maze.

Solving a Maze �9 Chapter 17 333

Building a Maze Runner
Our Maze R u n n e r applies the left-side rule and follows the left wall of the maze toward the

exit. It has no intelligence, only the capability to follow a wall.

Constructing the Maze Runner
To construct the Maze Runner , we used two servo motors, a ball caster, and one ultrasonic

(US) sensor.You can replicate the whole robot with parts solely contained in the M I N D -

S T O R M S N X T set (see Figure 17.5).

Figure 17.5 The Maze Runner

It works on a simple principle: The US sensor keeps the robot at a fixed distance from

the left wall. W h e n the distance changes abruptly, it considers this to be an opening to the

left. If the gap is large enough for the robot to pass, it turns left. This covers the case of

straight walls and left turns, but the robot will also have to face situations in which it hits a

wall in front of it and must turn right. For this the robot monitors another encoder, and

334 Chapter 17 * Solving a Maze

detects whether it is stalled by comparing the previous encoder reading to the current

encoder reading.
We designed the Maze Runner to be as small as possible in the planar dimensions so

that it can move through narrower mazes. We mounted the US sensor in front vertically to

measure the distance to the left wall, while keeping the robot design compact. Figure 17.6

shows the front view of the Maze Runner, and Figure 17.7 shows the left-side view.

Figure 17.6 Front View

As we discussed in Chapter 6, the motors are an inherent part of the robot's "chassis." In

our Maze Runner, the robot is divided into three "modules": the motors, the ball caster, and

the N X T brick with the US sensor. As we emphasized in Chapter 6, building a robot in a

modular fashion allows you to disassemble and fix each part without reconstructing the

whole structure.

www.syngress.com

Solving a Maze �9 Chapter 17 335

Figure 17.7 Left-Side View

The front ball caster was designed to be as small as possible, and to provide clearance for

the US sensor (see Figure 17.8). Now, you may ask why the two L-shaped five-stud pieces
are in the back. Well, when the robot moves forward, these two liftarms are in the air.

However, when the robot hits a wall, due to the vertical design we found it can easily fall

back. These two liftarms prevent this from happening.

Figure 17.8 Ball Caster Design

336 Chapter 17 �9 Solving a Maze

Programming the Runner
"Playing robot" is always a great exercise for devising or testing the strategy you are going to
implement in your program. Even before you actually write any code, imagine running the
program in your head, and try to explore the test maze of Figure 17.1 following the instruc-

tions step by step.
You will discover that this robot is relatively easy to program. The main program is com-

posed of two nested loops (see Figure 17.9). One handles moving forward and turning right

and the other handles the task of turning left and resuming forward movement.

Figure 17.9 Main Loop

We wrote the program in NXT-G using MyBlocks to ease programming, improve code
readability, and allow reuse of program pieces in the future. As you can see in Figure 17.9,
this makes the diagram easy to understand. The wall-following MyBlock (see Figure 17.10)
measures the distance to the left wall. If the distance is less than 20 centimeters, it assumes
there is a wall to the left and provides a steering ratio to the Move block to correct the dis-
tance to the target of 10 centimeters. It also resets encoder B, so the nested loop in the main
program exits only if there was a large enough gap to the left. Finally, it resets encoder C.

Solving a Maze �9 Chapter 17 337

Figure 17.10 Wall-Following MyBIock

As the robot moves forward, the encoder C value will increment unless we are stuck at a
wall. This is checked in the RightTurn MyBlock (see Figure 17.11). If encoder C did not

increment at least 5 degrees from the previous loop iteration, we know we got stuck, and we

need to retract and rotate to the right before we move forward again.

Finally, if encoder B is larger than some preset value, we know there was a large gap in

the wall to the left, and the LeftTurn MyBlock (see Figure 17.12) turns the Maze Runne r to

the left.

338 Chapter 17 �9 Solving a Maze

Figure 17.11 Stall Detection and RightTurn MyBIock

Figure 17.12 LeftTurn MyBIock

Solving a Maze �9 Chapter 17 339

Creating the Maze
N o w that you have a maze runner, you presumably would like a maze too! Unless you want

to show off your robot at some sort of public exhibit, it's not necessary to build a lovely

structure made from wood or other materials.You can test your creature against a makeshift
labyrinth made with small pieces of furniture, piles of books, large boxes, cardboard, or any-

thing else your imagination will suggest. Because we're using a US sensor to follow the

walls, we avoided using soft materials or cloth-coated pieces as these do not reflect ultrasonic

waves. Apart from that, the only thing we needed to ensure was that all the "walls" have a

reasonably smooth surface at the height of the US sensor, so the sensor measures the dis-

tance to the walls correctly.You can find a video of the Maze Runne r solving a simple maze

(made of piles of books) at www.nxtasy.org (see Appendix A).

Building a Maze Solver
To overcome the limitations of the Maze Runner and its "left-side rule" tactic, and to solve

the more general case of a labyrinth with an entrance and exit at two arbitrary points, we

designed our own Maze Solver.

Constructing the Maze Solver
In Figure 17.13, you can see we changed our approach somewhat. We added a third motor

to allow rotation of the US sensor so that we can scan in all three directions. The construc-

tion is again m o d u l a r ~ t h e three motors and the back wheel caster comprise one module,

the sensor with its rotating gear is another, and the third is the N X T brick mounted on top.

F igure 17.13 The M a z e Solver

www.syngress.com

340 Chapter 17 �9 Solving a Maze

Figure 17.14 shows the rear side of the Maze Solver. The two driving motors are held

together with an 11-stud beam and a 10-stud axle, also holding the third motor and the

wheel caster.

Figure 1 7 . 1 4 Rear V iew

Figure 17.15 shows the front view with the N X T brick and the US sensor removed.

The double bent beams connect the sensor motor to the other two motors, setting the

angles between the three motors.

Solving a Maze �9 Chapter 17 341

F igure 1 7 . 1 5 Front View (NXT Brick and US Sensor Removed)

Programming the Solver
Obviously, the hard part in making a maze-solving robot which uses memory is the pro-
gramming. Our Maze Solver uses the algorithm we briefly described in the "Applying
Other Strategies" section for tracking your path. This method is called Tremaux's algorithm.
Before we get into the actual Robo tC code, we will describe some concepts and assump-
tions needed for the program.

First, we define four "di rec t ions"~nor th , west, south, and east. These directions do not

have to coincide with the actual four winds. Let's call the direction of our robot at the

entrance "North," and let the other directions follow the usual convention. The current

"direction" will be held in a variable called MyDir. The following code snippet declares the
directions and some useful macros to find which direction is to the left/right of another
direction:

typedef enum { // Define the directions in space

North = O,

West = 1,

www.syngress.com

342 Chapter 17 �9 Solving a Maze

South = 2,

East = 3,

} tDirection;

tDirection MyDir : North; // My present direction

// What direction is to the left/right of 'Dir'

#define LeftOf(Dir) (tDirection) (((int)Dir+l) % 4)

#define RightOf(Dir) (Dir == North ? East �9 (tDirection) ((int)Dir-l))

Next, we assume that the maze is flat and has a typical "length s ca l e "~a characteristic

length of which all maze dimensions are multiples. We call this length scale "maze units," and

we shall use them to map physical space into a two-dimensional array holding the stored

maze map in the robot's memory. Moving one maze unit forward corresponds to moving

one " p o s i t i o n " ~ i n other words, changing our position in the map by 1. The map is stored

in a variable called Map which holds a value between 0 and 3 for each maze "position":

�9 Value = 0 This corresponds to a map position which we did not visit, or those

which we cannot reach at all.

�9 Value = 1 This corresponds to a position which we've passed already; in addition,

we have already tried all possible routes emerging from it.

�9 Value = 2 This corresponds to a position we have already visited, but from which

we haven't tested one emerging route. For example, coming at a T-intersection, we

need to choose one path. The other path is still unexplored, so we mark this posi-

tion in the map with a value of 2.

�9 Value = 3 This corresponds to a position in which two emerging routes have

been left unexplored. This occurs when we first come to a four-way junction. We'll

pick the right path, leaving the other two for the future.

Why do we bother with these different values? Well, when we move around the maze,

we will probably encounter cases in which either there's no way to proceed (we've reached a

dead end), or all positions accessible from our present position have already been visited in

the past. In such cases, we need to backtrack through our path until we reach a position in

which we left an unexplored path. To facilitate the backtracking procedure, we mark these

positions on the map with a value of 2 or 3, making it faster to go back to these. The cur-

rent position in Map is stored in two variables, MyPosX and MyPosY, defined in the fol-

lowing code snippet:

// size of maze map

#define SIZE X 22

#define SIZE Y 22

Solving a Maze ~ Chapter 17 343

// Hold map of maze.

// 0 - haven't visited this position

// 1 - been here, no unvisited paths from here

// 2, 3 - there are more ways to go from here!

int Map [SIZE_X] [SIZE_Y] ;

int MyPosX = I0, MyPosY = i; // Keep position in map, start at (i0,i)

int MyPath[SIZE_X*SIZE_Y] ; // Hold path traveled

int PathCounter = 0;

As we said earlier in this chapter, we use Dir to describe our robot's orientation. We

define two more useful macros that return a relative map posit ion at a particular "direction""

// Convert directions to relative position in map

#define RelPosX(Dir) (Dir == West ? -i : (Dir == East ? 1 : 0))

#define RelPosY(Dir) (Dir == North ? 1 �9 (Dir == South ? -I : 0))

N o w we can easily find out what's around us in the maze map! Our current posit ion is

Map[MyPosX][MyPosY], in front o f us is Map[MyPosX+RelPosX(MyDir)]
[MyPosY+RelPosY(MyDir)], and to the right (similarly to the left) is

Map[MyPosX+RelPosX(RightOf(MyDir))][MyPos Y+RelPos Y(RightOf(MyDir))]. There is, h o w -

ever, a small problem with the maze boundaries. We do not want to refer to positions out-

side the array bounds. We solve this with a very widely used "trick." We define the maze

array to be two maze units bigger in each dimension than the real maze. Then, at the start o f

the program, we set the outer "frame" of the array to a value o f 1, and the rest to 0:

// Set initial map

void Initialize_Map() {

int j, k;

for (j = 0; j < SIZE_X; j++)

Map[j] [0] = Map[j] [SIZE_Y-I] = I;

for (k = 0; k < SIZE Y; k++)

Map[0] [k] = Map [SIZE_X-I] [k] = I;

for (j = I; j < SIZE_X-I; j++)

for (k = I; k < SIZE Y-I; k++)

Map[j] [k] = 0;

}

Because we consider a value o f 1 to be an "exhausted" position, we will never try to

reach it as we move around the maze. This will also prevent us from trying to move out o f

the entrance if we encounter it again!

344 Chapter 17 �9 Solving a Maze

Finally, we will define some subroutines that do the actual motion; in other words, rotate

the US sensor in all directions; rotate the whole body left, right, or 180 degrees back; move

forward one maze unit; and check whether we are at the maze exit:
/ /These functions perform robot actions - you should write these!

void rotate US left();

void rotate US front() ;

void rotate_US_right () ;

void rotate robot left() ;

void rotate_robot_right() ;

void rotate robot back();

void move forward() ;

bool is in exit();

As you can see, we intentionally left these functions empty.You must complete these for

your robot to be capable of moving a single inch!

We now get to describe the main loop. At each iteration, the code will check which of

the three possible ways ahead (left/front/right) is accessible (the Boolean array Walls will

contain those which are not accessible) and decide which direction to go next in a variable

called NextMove:

#define DecreaseOne(Var) { Var -: I; Var = ((Var) < i) ? 1 - (Var) ; }

bool Walls[3] ; // which directions have a wall near? (0 - left, 1 - front, 2 -

right)

int NextMove; // which move should we do next?

#define WALL NEAR 20

// This subroutine does the actual maze solving using Tremaux's algorithm

void Solve_Maze() {

while (!is_in_exit()) { // loop until we are in the maze exit

// check in which directions we see walls

rotate US left() ;

Walls[0] = SensorValue(sonarSensor) <= WALL NEAR;

rotate US front() ;

Walls[l] = SensorValue(sonarSensor) <= WALL NEAR;
m

rotate US right() ;

Walls[2] = SensorValue(sonarSensor) <= WALL NEAR;

// first, assume all possible paths are unvisited

Map[MyPosX] [MyPosY] = 3- (int)Walls[0]+(int)Walls[l]+(int)Walls[2] ;

Solving a Maze �9 Chapter 17 345

NextMove = -i; // This value will tell that all paths are visited...

// check left path

if (!Walls[0]) {

// Have we visited the position to our left?

if

(Map[MyPosX+RelPosX(LeftOf(MyDir))] [MyPosY+RelPosY(LeftOf(MyDir))]==0)

{
// No. Let's go there now!

NextMove = 0;

} else {

// Yes. Decrease number of new paths here and at the position to the left

DecreaseOne(Map[MyPosX] [MyPosY]);

DecreaseOne(Map[MyPosX+RelPosX(LeftOf(MyDir))] [MyPosY+RelPosY(LeftOf(MyDir))]) ;

}
}

// check forward path

if (!Walls[l]) {

// Have we visited the position in front of us?

if (Map[MyPosX+RelPosX(MyDir)] [MyPosY+RelPosY(MyDir)]==0) {

// No. Let's go there now!

NextMove = I;

} else {

// Yes. Decrease number of new paths here and at the position in front

DecreaseOne(Map[MyPosX] [MyPosY]) ;

DecreaseOne(Map[MyPosX+RelPosX(MyDir)] [MyPosY+RelPosY(MyDir)]) ;

}

// check right path

if (!Walls[2]) {

// Have we visited the position to our right?

if

(Map[MyPosX+RelPosX(RightOf(MyDir))] [MyPosY+RelPosY(RightOf(MyDir))]==0)

{
// No. Let's go there now!

NextMove = 2;

} else {

www.syngress.com

346 Chapter 17 * Solving a Maze

// Yes. Decrease number of new paths here and at the position to the right

DecreaseOne (Map [MyPosX] [MyPosY]) ;

DecreaseOne (Map [MyPosX+RelPosX (RightOf (MyDir))] [MyPosY+RelPosY (RightOf (MyDir))]) ;

}
}

�9 // next code snippets come here!

The first lines of the code check the distance to the wall at each of the four winds. If

the distance is smaller than some predefined value, we decide there's a nearby wall in this

direction. We then assume that all accessible directions lead to an unexplored position (i.e., a

position in which Map equals 0), and we check the map at each of these directions. If we

indeed find it unexplored, we decide to go there next. Otherwise, we decrease the number

of"waiting" paths from our present position, as well as from the position we look at. Why
the latter? Because the only way we will encounter a visited position while traveling in an

unexplored route is if we're closing a loop, so the previously traveled position must have had

more than one path available when we were there. Notice that this code is a "right-hand

rule" code" If all paths are accessible and unexplored, the program preference is to first turn

right; if not, the next option is to move forward, and the last option is to turn left.

When we decide on the next step (i.e., NextStep is 0, 1, or 2), we rotate the robot

toward that direction and move forward:

switch (NextMove) {

case 0: // go left

rotate robot left () ; // rotate the whole robot left

MyDir=LeftOf (MyDir) ; // change to new direction

break ;

case 2: // go right

rotate robot right () ; // rotate the whole robot right

MyDir=RightOf(MyDir) ; // change to new direction

break;

}

if (NextMove i= -i) { // Should we move forward?

move forward();
m

MyPath[PathCounter++] = NextMove; // keep track of the move we did

MyPosX += RelPosX(MyDir); MyPosY += RelPosY(MyDir); // change position

continue; // go back to loop start

www.syngress .com

Solving a Maze �9 Chapter 17 347

�9 // next code snippet comes here

As you can see, we keep track of the steps we performed: left turn, forward, right turn. If

we did not find a path to use, we start backtracking using this path until we reach a position

in which there are still unexplored routes:

// If we got here, either we are in a dead end or we visited all possible

// directions from this position. We should backtrack our way out!

rotate robot back(); // rotate robot 180 degrees

// go back until you find a position with unexplored paths

while ((Map[MyPosX] [MyPosY] < 2) && (PathCounter-- > 0)) {

switch (MyPath[PathCounter]) {

case 0: // go back right

rotate robot right() ; // rotate the whole robot left

MyDir = RightOf(MyDir) ; // change to new direction

break;

case 2: // go back left

rotate robot left(); // rotate the whole robot right

MyDir = LeftOf(MyDir) ; // change to new direction

break;

}
move forward();

m

MyPosX += RelPosX(MyDir) ; MyPosY += RelPosY(MyDir) ; // change position

Once we reach a new emerging route position, we return to the start of the wkile loop

and look again for a path to take.

Improving the Program
We can still improve our Tremaux's algorithm program in several ways. Test your strength in

R o b o t C by trying to implement these improvements"

W h e n you decide to backtrack, first check whether backtracking will not lead you

past one of the positions around you. This would occur, for example, if you moved

in a circle and returned to the starting point. In this case, turning 180 degrees and

going back is wasteful; it's better to move one step and remove the whole loop

from MyPath.

348 Chapter 17 �9 Solving a Maze

When you find that a nearby position is accessible and its Map value is 3, this

means it contains an unexplored path; go for it!

Summary
If you want to test your skills in maze solving, the first step you have to take is to understand
the details involved in the process of finding your way out of a maze. We encourage you to
draw a simple maze on a sheet of paper and to "play robot" with it: Take a pencil which rep-
resents the position of the robot in the maze and move it according to the "program" you
execute in your head. This preliminary study will provide you with the necessary knowledge
to successfully build and program your robot.

The robots we discussed in this chapter prove that maze solving is in the range of

M I N D S T O R M S N X T robotics. In discussing the theory, we explained that maze solving

requires a robot with both an accurate navigation system and a memory to store a map of

the labyrinth. The navigation system is the more demanding of the two requirements (recall

Chapter 13 and the problems involved in finding the robot's location).

We discovered in this chapter that maze solving may be no more complex than wall fol-

lowing. This means your robot needs only minimal intel l igence~a trait reflected in our

Maze Runner robot. If the maze's entrance and exit are not placed along its perimeter, a

cleverer algorithm is required. We designed our Maze Solver to solve such mazes, using

Tremaux's algorithm.

350 Chapter 18 �9 Drawing and Writing

Introduction
Can a M I N D S T O R M S robot be made to draw or write? Sure. Believe it or not, that's not
even a very difficult thing to implement. In the following pages, we will show you two pro-
jects, the first mainly meant for drawing and the second for writing. Both of them require
some additional parts, but both have wide margins for modifications and allow for less
demanding variants.

Creating a Logo Turtle
Many of you may already know that Logo is a programming language specifically targeted to
education. Born in the late 1960s at the Massachusetts Institute of Technology (MIT), Logo
is derived from Lisp (with far fewer parentheses!) and features interactivity, modularity, and
extensibility. More than a programming language, Logo is a learning tool which has gone
through a number of changes and improvements over the years.

The most known characteristic creation of Logo is the Turtle, a symbolic turtle that
moves across the computer screen according to the instructions it receives. With simple
instructions such as forward 1 O, the turtle moves straight 10 units, and with right 90 it turns
clockwise 90 degrees. The statements penup and pendown specify whether the turtle leaves a
track behind it, thus producing drawings, or rather just moving to a different location.
Obviously, the language includes many other commands, but these are enough to understand
the principles of the Turtle graphics that made Logo so famous.

What many people don't know is that in its first version, the Logo program controlled a
small robot that actually drew lines on the floor. In subsequent releases, the turtle became
just a virtual animal on the screen. Our interest here, however, is in replicating the first
robotic version.

Dr. Seymour Papert was one of the early promoters of Logo, and he designed
the original Turtle. Under his guidance, the Epistemology and Learning
Group at MIT devised the first programmable brick, whose concepts led to
the development of the LEGO MINDSTORMS line.

Building the Turtle
The idea is quite simple: Build a small robotic platform that's able to go forward and back-
ward, turn in place, and lower and raise a pen. Despite this apparent simplicity, if you want a

www.syngress.com

Drawing and Writing �9 Chapter 18 351

turtle that works as expected, the task has many stringent requirements that must be adhered
to. For instance:

1. The robot must go absolutely straight.

2. The pen must be exactly in the pivoting point of the robot, because it must stay in
the same place on the floor while the robot turns (otherwise, it would trace a
curve).

3. You need a tracking system to measure both traveled distances and angles.

If you remember the driving architectures described in Chapter 9, you already know the

solution to the first point: Use a dual differential drive. The simple differential drive is suit-

able for this project only if you apply an active control to the wheels to be sure they travel
exactly the same distance, whereas the synchro drive would work as well but at the price of
greater complexity and a not so evident change in orientation during action. Another
advantage of the dual differential drive is that it requires a single encoder to comply with
point 3: When the robot goes straight it measures the covered distance, and when turning it
measures the angle.

Okay, so we have requirements 1 and 3 covered, but there's still the matter of the pen
being the center of rotation, which is at the midpoint of the imaginary line that connects
the wheels. Conceptually, it sounds easy, but you have to build your robot with this point in
mind.

The original tu r t l e~a differential drive--featured a transparent plastic dome to cover
the gears. We provided our turtle with a triangular shape (see Figure 18.1), because we
wanted to mimic the screen turtle of some widespread Logo systems. Anyway, those V-
shaped beams are definitely not necessary and you can shape your own turtle according to
your wishes.

Figure 18.1 The Logo Turtle

www.syngress.com

352 Chapter 18 �9 Drawing and Writing

Our differential drive does not use a caster wheel, because they tend to affect the direc-
tion of the robot slightly when resuming straight motion after a turn. With casters, the
straight lines would have a short wiggly segment, so we preferred to use a simple tile as the
third supporting point. To keep the friction on the floor to a minimum, we placed the N X T
suspended behind the drive wheels, like a sort of counterweight, bringing the C O G of the
robot very close to the drive axles, and thus, most of the weight upon the drive wheels.

Let's start exploring the dual differential drive chassis that drives the robot (see Figure

18.2). The gearing is more compact than those shown in Chapter 9, but it works exactly the

same way: One motor makes the differential gears and the wheels rotate in sync (motor C),
and the other rotates them in the opposite direction (motor B in this case). The dark gray
16t gear right in the middle of the photo is an idler gear which connects the other two 16t
gears; its center hole is not cross-shaped and thus it doesn't couple with the long joined axle
that crosses the base of the robot.

Figure 18.2 The Turtle Dual Differential Drive Platform (Top View)

Looking at the bottom, you can see the front skid roller (see Figure 18.3). Figure 18.4
shows a side view of the turtle pen mechanism.

www.syngress.com

Drawing and Writing �9 Chapter 18 353

Figure 18.3 The Turtle Dual Differential Drive Platform (Bottom View)

Figure 18.4 Side View of the Turtle Pen Mechanism

r

www.syngress.com

354 Chapter 18 �9 Drawing and Writing

The pen is a non-LEGO part, a common marker with its body wrapped in adhesive
tape so as to make it fit tightly into the 2 x 2 stud's squared hole reserved for the purpose. It
stays there with nothing but friction. Two rubber bands are placed to ensure this friction.

The pen control mechanism is a swinging assembly operated by a third motor (in this

case, motor A) (see Figure 18.5).

Figure 18.5 Turtle Top View

Now the turtle is ready. Place a large piece of paper on the floor, uncap the pen, and
adjust its height so that it touches the paper gently when it is in the down position (see
Figure 18.6). We strongly discourage you from writing directly on the floor. We're sure some-
body won't like it!

Drawing and Writing �9 Chapter 18 355

Figure 18.6 Side View of the Turtle Ready for Operation

Programming the Turtle
The first task in programming the Turtle is to create the primitives that control the basic

actions. Let's start with the easiest ones: the commands to move the marker up and down. A
short degree rotation to the marker motor (motor A) does the t r i ck~no th ing more is

required. In this case, it is easiest to set the marker down position on the ground and use the

view rotation function on motor A to see the number of degrees necessary to move the

marker adequately above ground. For this design, 75 degrees did the trick.

The forward and bach commands, meanwhile, are not Very difficult to implement, but

require that you dig into the physical properties of your robot.You must discover what dis-

tance it covers for any increment of the motor rotation. Programming the distance you want

the robot to travel affects the size of the image you are intending to create. If you have a

desired size ob jec t~ fo r example, a square with 30cm s ides~you can calculate the amount

of motor rotation required for the turtle to create this length. All you need to know is the

wheel circumference (in this case, 17 cm to 17.5 cm) and the gear ratio from the motor

wheel (in this case, a 12- to 24-tooth ratio [1:2]). If you have a fabric measuring tape or

other flexible measuring tape, it is easy to measure the wheel circumference. If you do not

have this type of measuring tape you can just as easily measure the distance you want by

356 Chapter 18 �9 Drawing and Writing

rolling the wheel on a ruler one rotation. For the wheels used in this design, the wheel cir-
cumference varied from 17 cm to 17.5 cm, compressed or uncompressed. Because these
wheels were designed with a large amount of built-in shock absorption, they will vary in
diameter with the amount of weight placed on them.

To get our turtle to travel exactly 30 cm, for example, all we have to do is multiply the

gear ratio by the ratio of the distance we want the turtle to travel, and divide by the wheel
circumference. This is displayed in the following equation:

Rotation forDrive Motor -

For our purposes:

G f-':~:'2,e?': i o * Des: Z'~::~ e n,gfi~:

2" 30cm - 3.529 rotation or 1,271 degrees.

You should use this rotation for the forward drive motor; in this case, motor C (see
Figure 18.7).

Figure 18.7 Programming for 30cm Forward Movement

This is the theory. The actual robot will probably require some in-the-field tuning,
because the distance covered by the wheels is affected by other factors: The weight com-
presses the tires and reduces their diameter. There might be some slippage too. We suggest
you proceed by experimentation, making your turtle draw a line, measuring it, and then cor-
recting the factor until you're happy with the result. All this process is meaningful only if
you care about having your turtle use units that correspond to some common length unit. If
you don't care, simply program the robot to go forward two or three rotations, for example.

Now the last part: the turning primitives right and left. If you remember from before, you

find that the change in orientation DO R (in radians) depends on the distance covered by the

www.syngress.com

Drawing and Writing �9 Chapter 18 357

wheels (T R - TL) and the distance between the wheels (B). W h e n the dual differential drive

turns in place, both wheels travel the same distance (T) in opposite directions, so we can

express the equation in simplified terms (see Figure 18.8)"

710 R = 2 x T / B

Figure 18.8 Computing Changes in Orientation

Actually, you know the ~O R you want to get; it corresponds to the desired turning

angle of the turtle, and it's the input to your subroutine. What you're looking for is the

Count of the rotation sensor that produces that DO R. The first step is to obtain T from the

previous equation:
For our robot to make a star, we need the robot to make a very sharp turn. The angles

of the points of a star are 36 degrees. For our robot to make this point, it has to turn 180 -

36 degrees, or 144 degrees. To make any turn we need to consider the outer turn angle for

the robot. This may seem a little confusing at first, but if you stop to think about the way the

robot travels, it makes sense.

N o w that we know our robot should turn 144 degrees to make a star, we need to figure

out how to program it to do so. The following equation will explain this process:

Rotation for Turn Motor =
Gea.,"R.a~ o* Deg,~ees Zo D.~ ~~.* ;T * g-7:,e e/Basr

For our purposes:

..'~ * t 4 4 * .,, ~'-.~. * 15;. 5 c m
= 825 degrees or 2.29 rotations

358 Chapter 18 ~ Drawing and Writing

You should use this rotation for the turning drive motor; in this case, motor B (see
Figure 18.9).

Figure 18.9 Programming for 144 Degrees Turning Movement

The power level is reduced to allow the robot to make more accurate angles.You may

need to adjust this more depending on the friction of the surface on which you are writing.

As for the forward mot ion control, this one will need some adjustment too.Your turtle is

not likely to draw proper angles on the first try. We suggest you make it draw a simple

polygon, such as a square or an equilateral triangle, and check that it closes the path properly.

For example, the sequence of four forward 1 rotation right 518 degrees should draw a square; if

the last segment intersects the first one but not at its starting point, the count is too high,

and you have to increase the rotation (e.g., 520 degrees instead of 518 degrees) and vice
versa: If the square doesn't close at all, you should decrease the rotation (see Figure 18.10).

Figure 18.10 Tune Calculations by Testing Your Turtle in Drawing a Square

www.syngress.com

Drawing and Writing �9 Chapter 18 359

Instead of working on the software, you can often change the geometry of the robot.

Altering the distance between the wheels by moving them in or out along the axles is a very

effective way to tune the robot. Make small adjustments until your square comes out perfect.

Once you have the correct rotation, it is easy to program the turtle to make a figure

with a count loop. Figures 18.11-18.14 show an example program for creating the star.

Figure 18.11 Example Program for a Star

The marker is lifted and then the turtle travels to a specific location. Then the pen is

placed down on the surface and the turtle enters a five-count loop that creates a star.

Figure 18.12 Example Program for a Star: Drive Motor

In the star, the turtle moves forward two rotations at 60 percent power before each turn.

www.syngress.com

360 Chapter 18 �9 Drawing and Writing

Figure 18.13 Example Program for a Star" Turn Motor

The turtle turns 825 degrees at 50 percent power during each turn.

Figure 18.14 Example Program for a Star: Loop Count

The turtle executes a total of five counts, creating the five lines of the star.
Work patiently on your turtle and its code. The result will astound you! Figure 18.15

shows our turtle drawing an almost perfect five-pointed star and a pentagon.

Drawing and Writing �9 Chapter 18 361

Figure 18.15 The Logo Turtle in Action

Tape Writer
The second project in this chapter uses an approach somewhat opposite to that of the Logo

Turtle: Here it's the paper that moves, while the robot stays still. The principle is similar to
the one used in ink-jet printers: A mechanism feeds the paper under a writing head, which

by itself moves perpendicularly to the direction in which the sheet advances. From what you
learned in the previous chapters, you can tell that such a system has two degrees of freedom
(DO F), controlled respectively by a paper-feeding motor and the writing head motor (actu-
ally, our robot implements a third DOE needed to move the pen up or down over the
paper). This Tape Writer is also a Cartesian system, because the movements of the mecha-

nisms are linear and perpendicular to one another.

This robot requires some extra parts: gear racks, beams, and a large tile; however, if you

don't have the needed parts, there are many things you can do to downsize the project to

keep within your inventory (we'll describe some of them).

Building the Writer
What we have in mind is a robot that writes on one of those common paper tapes made for

printing calculators or cash registers. One motor moves the paper strip forward and back-

ward, and a second moves the pen in a perpendicular (side-to-side) direction. The third

motor controls the up /down pen movements.

362 Chapter 18 �9 Drawing and Writing

Starting from the end, here's our finished robot that writes the word L E G O (see Figure

18.16).

Figure 18.16 The Writer Composes Its First Word

Analyzing the Tape Writer in detail, you can see that it's made of a body and three sub-

systems, all of them with one degree of freedom:

�9 The body provides the main structures and hosts the paper transport system.

�9 There's a movable carriage over the body, which transports the pen in a direction
perpendicular to the tape.

�9 Over the carriage, the pen assembly moves up and down.

�9 At the bottom of the body, there's the writing surface, a smooth surface that presses
the paper against the wheels.

Looking inside the main body, you catch a glimpse of the transport wheels and the pen

assembly (see Figure 18.17).

Drawing and Writing �9 Chapter 18 363

Figure 18.17 Writer Side View

The wheels are operated by a motor through a 16t gear, a 36t gear, and two connected
12t and 24t gears (see Figure 18.18).This latter geartrain is necessary to keep the two groups

of dragging wheels turning in the same direction.You need the paper to go back to shape

some letters, and this is why there are wheels both before and after the pen.

Figure 18.18 Writer Rear View

www.syngress.com

364 Chapter 18 �9 Drawing and Writing

Removing the pen carriage, you see the wheels and the paper tape down below (see
Figure 18.19). The carriage is translated using a rack and pinion assembly, powered by a
second motor on the body.

Figure 18.19 Writer Top View, Pen Carriage Removed

A second rack and pinion system, operated by the third motor, controls the vertical
movement of the pen (see Figure 18.20). Figure 18.21 shows a close-up image of the pen.

Figure 18.20 The Writer's Pen Assembly

Drawing and Writing �9 Chapter 18 365

Figure 18.21 Close-Up of the Pen

The writing pad is one large 8 x 16 stud tile piece (see Figure 18.22). If you do not have
this piece you could use a bunch of little tiles covering a plate as the writing pad. The irreg-

ular surface covered with studs wouldn't work. In case you don't have tiles, or you do not

366 Chapter 18 �9 Drawing and Writing

have enough of them, cover the plates with a smooth, thin support, such as a glossy card-

board, an aluminum or plastic sheet, or anything else similar that comes to mind.You can

also build a top out of standard LEGO bricks laid on their side, which should provide an

even more regular surface than tiles.

Figure 18.22 The Writer's Writing Pad Taken Apart

The writing surface is an independent part linked to the main body through short
rubber bands (see Figure 18.23). Those bands pull the surface up against the pen and against
the wheels of the feeding mechanism.

Programming the Writer
Programming the writer may seem difficult, but it is much easier to divide the program into

My Blocks for each letter and then bring them together in one large program. Our robot

uses a loop program to write the word L E G O and a touch sensor to order more copies.

Figure 18.24 displays this program.

Drawing and Writing �9 Chapter 18 367

Figure 18.23 Writer Front View

Figure 18.24 Program for Writing the Word LEGO

As you can see, the My Blocks are labeled with the letter they write in the program. The
program writes the four letters and then lifts the pen up, advances the paper roll so that you

can view the words, lowers the pen to the original starting position, and then waits for the

touch sensor to order another copy. The My Blocks can be small or large programs

depending on the complexity of the letter. For example, the program for the letter "L" is a

very short program displayed in Figure 18.25. However, the program for the letter "E"

requires much more movement.

368 Chapter 18 �9 Drawing and Writing

Figure 18.25 Program for Writing the Word LEGO" My Block for the Letter I I L IF

In this program, the A motor controls the vertical movement of the letters, the C motor

controls the horizontal movement of the letters, and the B motor lifts the pen up and down.

To draw the letter "L" the A motor moves down the entire length of the vertical movement

from top to bottom. For this design, that is 130 degrees of motor rotation. The power level is

set to 35 percent to give a crisper line.The pen then feeds the paper running C motor 300

degrees at 50 percent power level.You can adjust this value depending on the size font you

desire. Then the pen is moved up to the starting height and over a spacing of 200 degrees,

and is placed down, ready to write the next letter.You can change this spacing depending on

how much space you want between the letter characters. Figure 18.26 shows the program
for writing the letter "O."

Figure 18.26 Program for Writing the Word LEGO" My Block for the Letter "O"

Once you create a My Block for any letter you want, you should save them so that you

can recall that letter later. Who knows; maybe you can program the entire alphabet!

www.syngress.com

Drawing and Writing �9 Chapter 18 369

What to Write
We had the idea of making this robot an Automatic Haiku Writer, but the truth is that you

can make it write whatever you want. In the last part of this chapter, we will give you some

hints about other possible uses of this robot" a label-writing machine, a graphing system, and

more.
Now, what's a haiku? It's an ancient Japanese poem with a formal structure. Though not

everybody agrees on all the rules involved, the most accepted form is a three-line verse
where each line is composed, respectively, of five, seven, and five syllables. It usually contains
a reference (even indirectly) to time, and it's broken into two parts, such as an introduction
and a theme, or an action and its consequence. Here's our own example of a haiku contem-

plating the theme of this book (we ask your forgiveness in advance!)"

The robot is on

Feel a bit worried, about

The things it could do

You can program your robot to produce a written haiku on request, generating it ran-
domly from a "database" of predefined sentences. Or using a more sophisticated approach,

you can pluck random words from a (small) inner dictionary, combining them according to

simple predefined grammatical structures (see Appendix A for some links to useful Internet

resources in this regard).

Further Suggestions
The writing and drawing theme offers many other ideas. The following suggestions are far
from being exhaustive. Consider them starting points for your own creations.

Copying
This has become an almost classic project, but it's still interesting, instructive, and chal-

lenging.You need a feeding mechanism similar to those of our Tape Writer, but duplicated

for two pieces of paper. It must be able to drag two sheets of paper: the one being copied

and the blank one. Obviously, the whole machine will be much larger than the Tape Writer

if you plan to use standard letter or A4 sheets.
The copying system is made of a translating assembly that moves a light sensor back and

forth across the original sheet and a pen in the corresponding position over the copy sheet.

With the paper feeding motor stopped, the software scans a row with the light sensor, and
depending on what intensity it detects, it puts the pen up or down. After each row, the paper

will feed a bit for the next scan.

370 Chapter 18 �9 Drawing and Writing

The requirements for this project are not very high: three motors, one light sensor, and

one or two touch sensors for the carriage movements; but we suspect that in creating a stan-
dard sheet copier, you will likely need many additional beams and plates, because the struc-
ture will be rather large.

Emulating Handwriting
Using a completely different technique, you can build a robotic arm that writes with move-

ments similar to those of a human arm.You need an arm with two degrees of freedom: Two

levers move on a horizontal plane, the first attached to the body of the robot and the second

to the end of the first.At the end of the second lever, there's the pen with its lifting mecha-
nism. We suggest you keep it very lightweight, using pneumatics, the flex system, or a

micromotor.
The software to control this beast is not very simple. Converting the angles of the arm

into Cartesian coordinates on the sheet requires some trigonometry, and all that that implies.

Learning by Example
To make the preceding project even more interesting, and at the same time get rid of all the

trig (yeah!), you can design your robot to learn from your movements. In this case, your

robot will have a training phase, where you guide its arm to write or draw what you want,

and a production phase where it replicates your movements.

Make the motors easy to decouple, so you don't have to move them while driving the

arm during the training phase. The program will save the sensor readings at small intervals in

order to reproduce those positions later in the production phase.

For the pen up /down movements, you can keep the motor connected and controlled by
a touch sensor that you press when you want to flip from one state to the other.

The most challenging part of this project is storing the data collected during the

learning process.You have basically two options: using a language that allows large memory
structures such as arrays, or doing the dirty work on the PC, leaving all the "intelligence"
and data there and using the N X T as merely an executor.

Drawing and Writing �9 Chapter 18 371

Summary
In this chapter, we explored some techniques described in Part I that had not yet been
applied to robots in this book. The Logo Turtle offers a good opportunity to find a use for
the sophisticated dual differential drive of Chapter 9, which is capable of turning in place
like a simple differential drive, but also of going perfectly straight. In fact, at the price of
some mechanical complexity, it provides a way to separate straightforward motion and
turning capabilities using two independent motors. Its advantages include the fact that you
can monitor both kinds of movement with a single rotation sensor attached to one of the
wheels. Using the dead reckoning math you can precisely control your Turtle. We went
through those equations again, providing a concrete example of how to implement them in

an N X T program.
Though conceptually simpler, even the Tape Writer showed some construction tips. It is

a Cartesian system not too different from those used in the robots of previous chapters (the
Maze Solver and the Tic-Tac-Toe machine), but it does demonstrate once more that by

reevaluating the terms of a problem, you can find an easier solution. For example, a Tape
Writer built with a technique similar to the Maze Solver would have required very long
rails; so, moving the paper instead of the robot, your construction results in a more compact
design that is also capable of writing texts of unlimited length.

In the suggestions we provided at the end of this chapter, we described the possibility of
emulating handwriting using an arm. This includes a glimpse at how robots can learn by
example too; a feature used in many real-life robots, including industrial robots. In a case
where you want your robot to perform handwriting, you can guide the movements of the
robotic arm to copy the shape of any written character; the robot "remembers" your move-

ments, and then is able to replicate them and write by itself.

This Page Intentionally Left Blank

374 Chapter 19 �9 Racing Against Time

Introduction
This chapter explores the world of M I N D S T O R M S robotics contests and challenges. The

information in this chapter is mainly based on direct experience, accumulated while partici-

pating in competitions organized by various organizations. Some of the competitions refer-

enced in the following pages are routinely run in various locations. They include the

following:

�9 The Northeast Indiana Robot Games (NEIRG) February and August

�9 Chicago Area Robotics (Chibots) competitions May and November

�9 Central Illinois Robotic Club (CIRC) March

�9 Lafayette L E G O Robotics Club (LafLRC) competitions May (typically)

�9 HiTechnic sponsored competitions August (typically)

�9 B r i ckwor ld June

�9 R T L Toronto year-round

This chapter won't be discussing the specific details of the contests; instead, it provides
you with a good starting point for more general considerations. But we do recommend that
you look up the competition rules on the Web sites of the competitions listed and learn
more about the variations for competitions that may sound simple, such as "line following."

The first section of this chapter is about robotics contests in general. It explains what

robotics contests are all about, from the definition of the rules to the course of competition.
For those of you interested in participating in LEGO robotics contests, the chapter will give
you some hints about how to find a LEGO Users Group not far from where you live.

In the later sections of the chapter, contests related to pure speed, as well as those
demanding great amounts of mechanical and programming acumen, are introduced. There
are many different kinds of contests and challenges. Because of this, they are grouped into
three categories: contests based on speed, contests based on strength, and contests based on
ability. These categories are not absolute, because most of the competitions require a mix of
these capabilities. For example, a line-following contest is mainly about speed, but each robot
is also required to run without veering too far from the line. Nevertheless, we tried to sort a

few typical contests into the categories previously mentioned because in our opinion, this

helps in focusing on their key points.

Hosting and Participating in Contests
A contest offers many opportunities to learn new concepts and build some experience.
There are at least four main phases of participating in a contest, each one requiring extensive
usage of your know-how while contributing to your knowledge base. They are:

Racing Against Time �9 Chapter 19 375

1. Defining the rules Participating in this phase depends on whether you are the

one who organizes the contest, or you are part of a group that does. Unless you're
deciding on your own, this will prove to be a very creative moment , where the

group develops a list of rules, adjusting them until it feels they are meaningful and
consistent. A set of rules always has a specific purpose (whether declared or not),
which has been chosen to test the ability of the competitors on a specific field. The
"legislator" should take care to close any possible loopholes that might allow a con-
testant to escape the main difficulties of the contest, which requires that he or she

imagine all the possible approaches to the problem. The rules should also try to
ensure that the contest is fair to all competitors, regardless of their monetary

resources. Luckily, most of the time, you don't have to worry about defining the

rules because you are a competitor, not a sponsor.

2. Studying the rules and deciding on a s t ra tegy From this moment on, you

are in the competitive arena, and you must find a strategy to beat your competitors.

Don' t limit your choices to what the organizing committee expects you to do. In

our experience, most contests have been won by people who found a very original
way to interpret the rules without violating them. Don't be afraid to find loopholes

and take advantage of them. Visualize different solutions on your own and deter-

mine the pros and cons of how they comply with the rules.

3. Bu i ld ing the robot This phase will very likely present some surprises to you.

Implementing your desired strategy, you'll discover new constraints and opportuni-

ties you hadn't thought of while imagining your robot. As for programming, we

strongly suggest that you stay with simple but solid strategies. Only when you're
sure the basic behaviors work as expected should you add the more sophisticated
components, making sure not to introduce bugs in the previous code.You won't
believe how many matches people win by keeping it simple!

4. Attending the con tes t This is the most exciting m o m e n t ~ o n the field, testing
your ability against your competitors! It's also the moment to learn: Study the other
robots and their strategies; observe the course of the matches. Don' t be frightened
to ask for explanations and details; most of the builders are usually more than happy

to describe their creatures. M1 that you learn will be useful for other contests,

whether run on the same set of rules or not. One last suggestion: Never throw in

the towel before the end, because anything can happen during the event. The

strongest competitors aren't always crowned the winners. Learn from each match.

Would your robot do better if you moved its starting point or direction slightly

while still complying with the rules? In a head-to-head competition, pay attention

to other matches and learn how to best position your robot to beat other robots.

www.syngress.com

376 Chapter 19 �9 Racing Against Time

Use the Internet to search for other M I N D S T O R M S fans. One popular resource is the

LEGO Users Group Network (LUGNET), which lists dozens of local groups. Many of

them also have their own Web sites, which shouldn't be difficult to find using any search
engine. Once you've found a group, or some individual users, there's no certainty that

anyone's going to leap up and organize a robotics contest from time to time. But you, yes

you, can be the one to get the ball rolling (or robots, rather).

L U G N E T is the best place to find information about contests of all sorts, as most local

groups advertise the contests they organize there. Usually they refer you to a Web site where

you can find all the details about the time, place, and rules of the contest. Some contests

require a small admission fee for each robot, which funds the prize for the winner. Events

are characterized by a very friendly atmosphere, and you'll be welcomed even if you just go

to watch and learn.

Optimizing Speed
The first challenge described here concerns pure speed. Don't make the mistake of thinking

speed is purely trivial and poses few challenges in terms of robotics. We've been proven

wrong on this score ourselves. Even a straight-out speed race promises surprises.

Drag Racing
"A starting line; a finish line; the fastest robot to cover the distance wins." Described in these

terms, the race sounds boring. But stay tuned, and take a closer look at the implications of

this definition.
The speed of a vehicle is affected by a number of factors: motor power, gear ratio, mass,

and friction. Using electric motors, the maximum power you can apply to your race car
depends on the kind and number of motors, and the current you supply them. With the

addition of the new N X T motors, three types of motors are widely available.Also available

are the traditional MINDSTO1KMS "gray" motors, as well as the black " R C Buggy" motors

that are now available as a separate motor pack (LEGO set #8287) and as part of kits such as
the yellow crane (LEGO set #8421). Of course, the rules of the competition will probably

specify the allowed motor type and a restriction on power source.

For the purposes of this chapter, it is assumed that the competition limits the vehicle to

two N X T motors and an N X T as the power source. Even with these limits, there are still

many variables to consider in your design process.

The gear ratio and mass will have a strong influence on the acceleration rate of your

vehicle; here is a short list of tips:

Racing Against Time �9 Chapter 19 377

�9 The shorter the gear, the shorter the time it takes to reach the maximum speed.

The problem is that a short gear also has low top speed.You have to balance the

two effects, and the optimal choice depends also on the length of the race: Favor

acceleration on short tracks, and maximum top speed on longer ones.

�9 Build your robot in a way that allows easy replacement of the gears, so you can

experiment with different ratios in a time-efficient manner.

�9 Keep the gearing pared down to the essentials. Remember that each stage adds

some friction. There's no need for a differential gear, because the dragster travels on

a straight run.

�9 The diameter of the wheels has its role in the conversion of power to speed. If you

substitute the wheels of your car with ones half the diameter in size, you get the

same effect as though you had reduced the gear ratio by a factor of two.

�9 Acceleration is also influenced by the mass you have to move: Under the same

power, higher mass equates to lower acceleration. This is due to inertia (see Chapter

6), which explains why it's harder to get a car rolling than it is to push a child in a

stroller. So, a very important thing to do is to keep the mass at a minimum. Build a

lightweight structure.

�9 Another factor related to mass is the center of gravity of the vehicle. As with a top

fuel racer that goes 300+ miles per hour, your vehicle should center the weight

almost over the drive axle at the rear of the vehicle. The center of gravity should be

just far enough in front of the rear axle to keep the vehicle from lifting its front

wheels off the ground for a significant amount of time.

At this point, you haven't yet considered the modes of operation allowed by the NXT.
Up to this point, the challenge is essentially electro-mechanical. There's no need for an

NXT; a vehicle supplied by a battery box would perform the same, or even better (recall
that the R C X has an inner current-limiting device, and the battery box doesn't). To create
the necessity of at least a few lines of code, we suggest that the dragsters be run down a

narrow corridor with a three-quarter-inch black line down the center. Just as top fuel drag-
sters need to stay in their lanes, our robotic counterparts will incur their own time penalty

by bumping the walls. Of course, there will need to be a rule against the vehicle intention-

ally riding against the wall.

Combining Speed with Precision
When you move from races based on pure speed to those that require additional skills, your

projects become more complex, and more than likely, the resulting vehicle will move slower.

All the considerations listed in the preceding section still apply~batteries, motors, gear ratio,

mass--but you must also take new variables into account. Speed will actually become what

www.syngress.com

378 Chapter 19 �9 Racing Against Time

makes your task more difficult: When you design a robot for yourself, you usually feel satis-
fied when it works; but when you have to build and program it to be as fast as possible,
some techniques that worked at a slower pace prove unsuccessful at higher speeds.

Sometimes you reach a point where you cannot increase speed without compromising
the reliability of your robot. This is the time when a further improvement can come only
from a paradigm shift, a change from one way of thinking to another. This principle can be
summarized in a few words: Don't set your heart on a particular solution. Try to look at the
problem from different angles and keep your mind open to any idea, even those which ini-

tially seem strange or impractical may lead to a winning configuration.

ki ne Fol Iowi ng
Don't worry, this chapter doesn't start discussing line following again! Jump back to Chapter
14 if you feel compelled to revise some of those concepts. Line following just couldn't be
ignored in a chapter that talks about races against time, because it presents many interesting

discussion points.
If you are the one who decides the rules, don't underestimate the importance of the

details. State the number and kind of the allowed par ts~motors and sensors in particular.

More important, be very precise regarding the nature of the path, informing competitors
about the width of the line and the minimum radius of the turns, the latter having a strong

influence on the structure of the robots.
Line-following contests are usually judged by speed alone. Evaluating accuracy, though

theoretically possible, is not a very practical option. However, if you want to try this option,
you can use a paper pad and attach a pen to each robot so that they draw a line as they
move. At the end of each run, measure the maximum distance between the course of the
robot and the main line, and apply greater penalties to greater distances.

Line following allows for many interesting variations, including these:

�9 Round trip When the line ends, the robots must return to the starting point.

�9 Short interruptions in the line, specified by number and length For the
robots, it's like hanging in midair for a while. The restart point of the line might
even be offset from where the line broke.

�9 Small obstacles to overcome The robots should detect these with bumpers,
suspend line following, pass the obstacle, and resume line following again.

�9 Obstacle removal Similar to the preceding variation, except that objects of a
specific size and shape must be removed instead of climbed over.

�9 Specific robotic architecture Specifying that a particular type of architecture be

incorporated into the robot design. For example, all the robots must use legs

instead of" wheels.

Racing Against Time �9 Chapter 19 379

Wall Following
Conceptually similar to line following, in this challenge, the competing robots must follow a

wall instead of a line. The software is actually very similar to what works for line following,
with only a few adjustments to reflect the difference in sensors.

If you decide to organize a wall-following competition, remember that the walls used
need not be real walls.You can create temporary walls with wood, cardboard, or any other
material of your choice. Wall following can be as simple to set up as having the robot find its

way around the perimeter of a large cardboard box. As with all competitions, it's important
that you put a lot of care in specifying the details, including the following:

�9 The height of the walls, their color, and the material they are made of

�9 The color of the floor and the material it is made of

�9 Whether the robots are required to remain in constant contact with the wall, or if
they can move apart from it for a while

�9 The shape of the course, or at least what kind of angles the robots should expect

�9 Whether the robots are allowed to "hook" the upper edge of the walls

Moving to the point of view of the participant, the hardware configuration required to
follow walls can be very similar to that of a wall-maze-solving robot (maze solving actually

being a sophisticated variant of wall following). However, this is one of those cases where an
increase in speed brings new difficulties. Similar to what happens in high-speed line fol-

lowing, the critical factor here is the reaction time of the robot. In fact, anytime it loses con-
tact with the wall and needs to undertake a corrective action, that longer reaction time
entails a stronger correction.

As mentioned in Chapter 14 when discussing how to optimize line following, this is
easier said than done. To recapitulate, the elements you have to consider include:

�9 T h e m e c h a n i c a l c o n f i g u r a t i o n o f y o u r r o b o t These include the type of drive,
number of motors, position of the sensors, gear ratio, and backlash within gears.

�9 T h e f i r m w a r e you instal led on y o u r N X T Mternative firmware installations

are available and the variants that are available are constantly changing. Some alter-

natives support the standard NXT-G language as well as other programming envi-

ronments.You need to choose a firmware and environment that you can use

effectively to provide the fastest response time for your robot.

�9 T h e a l g o r i t h m s used in the sof tware This comprises strategies adopted to
keep the robot on course as much as possible.

The mechanical configuration of your robot is something you have to experiment with.

The optimal solution depends on the set of rules with which you'll use to race. As for the

www.syngress.com

380 Chapter 19 �9 Racing Against Time

firmware options, this is an opportunity to study a new language and install a new system,

though not everyone will want to do that just to attend a contest.

As for the strategies, some of you may recall that Chapter 12 introduced hysteresis as a

technique aimed at improving the efficiency of a system, because it reduces the number of
corrections it has to make. It was definitely an interesting option for line following, but is it
applicable to wall following too? The answer depends on the configuration of your robot. If

it relies on a touch sensor to "feel" the wall, hysteresis will be of no help, because all you can

determine from the robot is whether it's touching the wall. To take advantage of hysteresis,

you need finer in format ion~you need to know the distance from the wall, so you can make

your robot decide when and how much to correct the route. This implies that you have to

replace the touch sensor with a more sophisticated device. For example, you could arrange a

bumper, or antenna, connected to a rotation sensor in such a way that the count of the

sensor is proportional to the distance. Or you may be able to use the Ultrasonic Sensor to

detect a distance from the wall~l ike the Maze Runner of Chapter 17.

Other Races
Many other type of contests require your robot to perform some action as quickly as pos-

sible. As we explained in the introduction, most of them require some additional capability

rather than just speed. In Chapter 20, we will describe contests in which speed is important,

but this is usually in the background when compared to other factors, such as efficiency in

finding and gathering objects. In the following list, we suggest a few ideas for competitions

in which speed is the most important component:

�9 Car rac ing Car racing is similar to drag racing, but the robotic cars run on a cir-

cuit that is more complex than just a straight track. The circuit may be delimited
with colored tape on the floor, or with side walls. Avoid reducing the contest to
line or wall following; instead, design the circuit so that a robot that follows one of
the sides takes a longer route than those that run inside the track. If the circuit is

delimited with real walls, encourage the competitors to use sophisticated detection
techniques, such as proximity sensing, by applying a penalty for every collision with

a wall. Another approach to the car racing track was developed by the Lafayette

LEGO Robotics Club. They use an oval track that is about 2 feet wide and has a

black-to-white gradient across the track.

�9 Fast pa in t ing Each robot is equipped with a felt-tip pen and is asked to paint a

given area on a sheet of paper. The robot that covers the surface fastest wins.

Consider basing the results of each competitor on a combination of the elapsed

time with the comprehensiveness of the coverage. The panel could be provided

with a robot designed to scan the sheet and evaluate the result?

Racing Against Time �9 Chapter 19 381

Wall c l imbing Prepare a climbing wall equipped with special holds that a robot
can seize (this could be as simple as a grid of horizontal bars); the fastest robot to
reach the top wins.You can keep the competition open to ideas, allowing any kind
of technique to reach the top, including lifting mechanisms and the launching of
ropes. Be sure to provide a soft surface under the wall as you don't want anyone to
break his NXT if i twere to fall off the wall.

Summary
This chapter introduced you to the world of contests which represent a great opportunity to
expand your knowledge, stimulate your creativity, and compare your ideas with others.

Even races that seem the least "robotic" of all the possible types of competitions can spur
you to find new solutions or improve old ones. During contests, the details are very impor-
tant.Your robot should not only work, but work better than its competitors. For this reason,
an apparently simple task such as going straight and fast requires thoughtful planning of your
project: batteries, motors, geartrains, wheels, the weight of the vehicle, and the center of
gravity.., all of these elements are crucial to success.

When you move to contests that involve highly specialized capabilities, such as naviga-
tion, the problems become much more complex. Tasks as simple as line following and wall
following require a tremendous effort when your purpose is to design, build, and program a
robot tuned for optimal performance. This is a process which proceeds by trial and error, and
which will test your skills, your experience, your creativity, and, most of all, your patience!

We encourage you to participate in contests. They can really be a great experience. Be
humble enough to learn from your mistakes, or from more effective techniques rather than
completely different approaches adopted by other robots. Take everything very seriously
during preparation: Try different solutions; perfect the details; test your program thoroughly
until you feel satisfied. But don't take the final rankings too seriously~remember, it's all in
fun!

www.syngress.com

This Page Intentionally Left Blank

384 Chapter 20 * Hand-to-Hand Combat

Introduction
The contests described in other chapters are more specific to those where each competitor
has its turn, and the results compare the individual performances. In this chapter, we'll talk
about competitions where the rival robots fight face to face in a more spectacular way.

In our experience, sumo is one of the most suitable kinds of competition for small
robots, offering the opportunity to test an incredible range of techniques that may prove

useful in all your projects, not just during contests. We will take a look at variations on some
familiar solut ions~such as bumpers and the use of the ultrasonic sensor~and we will intro-

duce some new ones. For example, we will illustrate a transmission, which behaves like a sort
of automatic gear switch.

Although the technical aspects of building a successful sumo robot are important, the
design requires much more than simply putting together a few mechanical solutions: It

requires a strategy. Will your robot be very aggressive, or do you prefer a defensive approach?

It could be robust and slow, or lightweight and fast. It could be designed to actively search

out its opponent, or to react when it's under attack.You cannot work at the mechanical con-
figuration and decide how the robot should behave after it's finished. On the contrary, you
have to pick up a strategy and design both the mechanics and the program according to it.
This principle applies to any robot, but it is particularly important for sumo robots, and it is
the key to understanding this chapter: We want you to devote the proper attention to the
connections between the planned behavior of your robot and the solutions you can adopt to
effectively implement it.

Building a Robotic Sumo
We explained in this chapter's introduction that when you start building a robot for a sumo
contest, you must have a strategy in mind. The process starts before you build your robot. It
begins by examining the rules carefully, understanding what you can and cannot do, and
deciding your line of action.You must try to imagine what the opponents' strategies can be,
and plan your robot to be able to resist their attacks and take advantage of their weak points.
Obviously, you cannot really know how the other competitors will strategize and behave,

but this exercise helps you to focus on a well-defined strategy. R e m e m b e r that any strategy

is better than no strategy at all! Figure 20.1 shows a simple sumo robot ready for action.

www.syngress.com

Hand-to-Hand Combat �9 Chapter 20 385

Figure 20.1 A Simple Sumo Robot

This section starts by describing a typical set of rules, which will help you in framing

what a sumo contest is, and provide a starting point in case you want to organize your own.
Then we'll describe how you can tune your robot to produce maximum force, which is

undoubtedly a very important component in a sumo competition. We will also explain how
to configure your robot to take advantage of some important offensive and defensive behav-

ioral strategies.

Setting the Rules
In a typical sumo competition, you will receive two sets of similar rules. The first set of rules
states that the robots can be made out of any original LEGO pieces, in any desired quantity,

but that they must be within a maximum size of 32 x 32 studs and a maximum weight of

1.5kg (3 lbs). In the alternative set of rules, which we call Mini Sumo, each robot may be

built using only parts from a single M I N D S T O R M S N X T set; there is therefore no need

for size and weight constraints.

For most other aspects the two sets of rules are almost the same:

�9 The field is a circular or square pad with a contrasting external strip of 20 cm (8

inches). Usually the pad is white and the strip black, or vice versa. There is also an

www.syngress.com

386 Chapter 20 �9 Hand-to-Hand Combat

optional 2-inch warning line that warns the robot as it approaches the edge of the
ring.

Only two robots can fight on the field at a time. Should one robot for any reason

find itself outside the field boundaries, that is, any portion of it touches a point
beyond the external strip, the robot loses the round. If neither robot is eliminated
within a chosen time limit (e.g., three minutes), the match ends in a draw.

A robot may also be eliminated if it is overturned by its opponent or it finds itself
in a situation where it can no longer maneuver.

No "violent" behaviors are allowed. A robot can only push or lift its opponent. It is

in no way allowed to damage its opponent's structure or parts. This will be left to
the judge's discretion.

A robot cannot drop any part or subsystem in the field either deliberately or invol-
untarily. Any part found loose on the field will be removed by a member of the
panel.

The robots must be fully autonomous; any kind of remote control is forbidden.

Every robot must comply with the limits in size and weight at the beginning of a
match, but once the match starts, it can modify its own structure, perhaps

extending parts itself so its dimensions become larger than the initial specified size
limits.

There are many other, less important, rules covering items such as batteries, the compo-

sition of the panel, the prematch test time, and more. Some sumo competitions require that

your robot pass an admissions test: It should be able to push a block of wood out of the
fighting ring. If it can't beat a block of wood, it has little chance against another robot, and
this rule is meant to screen out robots that are too weak to enter the contest. This rule is not
that commonly enforced, but it is a good exercise, and it may help in filtering out weaker
robots to make large tournaments quicker.

Maximizing Strength and Traction
The making of a strong sumo robot requires much more than just brute force, but we

cannot deny that maximizing the generated push will increase your chances of winning
some matches and, maybe, the tournament.

When optimizing the pushing power of your robot, the first thing you need is an objec-

tive way to measure it. Without measuring the force, the improvements you make are subjec-

tive and, as a result, are very inaccurate. During preparation for one of the first robotic sumo

contests, a friend and robot builder suggested a simple trick based on a very common object:
scales, such as those used in many kitchens to weigh flour, sugar, and other ingredients.

www.syngress.com

Hand-to-Hand Combat �9 Chapter 20 387

You have to place the scale on its side, on the table or the floor, possibly removing the
upper tray, and hold it firmly while your robot pushes against it.You're not interested in the

absolute value that the scale indicates, but rather in comparing the push produced by dif-

ferent setups.
Many factors affect this force; you can imagine a sort of path of power that goes from

the batteries to the wheels, passing through the motors and the gearing, decreasing in accor-
dance with the variables that affect each part along the path (see Figure 20.2).

Figure 20.2 Limitations on Force

The rules will hopefully specify that all competitors use the same kind of commercial
batteries. Between the batteries and the motors, there's the NXT. It's worth reminding you
once again that the N X T incorporates a current-limiting device to protect the motors con-

nected to its output ports. If the rules allow the use of custom parts and you have them or
are willing to make them, you can consider the use of a Motor Multiplexer from
Mindsensors or HiTechnic, or the use of a homemade motor hub made by Philo (Appendix

A).
The number of motors influences the generated power. Simply use the maximum

allowed by the rules and by your own inventory. As for the mobility configuration, the dif-
ferential drive allows for the highest combination of maneuverability and simplicity. The fact
that it doesn't go perfectly straight is not relevant to sumo fighting, and the dual differential
drive has no advantages in this case. On the contrary, the capability to use one motor to turn

and the other to move reduces the maximum generated force.
The optimal gearing is, as always, easier to determine by experiments than by calcula-

tions. Generally speaking, the higher the reduction ratio, the higher the push, but this doesn't
mean you should gear down too much. Speed has its importance (we'll explain why later in

the chapter), and very high reduction ratios introduce too much friction, which uses up pre-

cious power.
Now we come to the part where you have to convert the produced torque into the

actual push. The wheels are a critical component: If they don't grip the pad well, the rest of

your efforts will prove fruitless. This is when the scales we mentioned earlier prove to be an
enormous benefit. By testing different kinds of LEGO wheels, you'll discover that there are

significant variations in grip. The ones from the 8462 Tow Truck work particularly well, as

well as the large spoke wheels from the W979648 Education Resource Set and many others.

388 Chapter 20 �9 Hand-to-Hand Combat

On no account should you use tracks. They offer extremely low grip, and almost no grip at
all in the direction perpendicular to its motion.You'd have little hope at all if your opponent
broadsided y o u ~ a n eventuality more probable than a head-on collision.

If possible, try to test your robot on a surface similar to the contest's official pad.
Different materials require different wheels. For example, the wheel having the best grip on
a smooth tabletop is not necessarily the one with the best grip on a rough plywood surface.

The position of the center of gravity is also very important when it comes to friction

and your wheels. Keep the center of gravity (COG) as close as possible to the main drive
axles.

Attack Strategies
We anticipated that force wouldn't always make the difference in a robotic sumo contest.
Many different strategies can affect the result and cause a robot to win out against a more
powerful competitor. These include finding the enemy first, using speed as a force, using a
gear switch for maximum speed and push, and other offensive tricks.

Finding the Enemy
A very important rule is to find your enemy before he finds you. This basic military prin-

ciple applies to sumo robots as well, for the simple fact that the first one to engage the other

has a good chance of attacking it on a weak side. Sumo robots are generally designed to

push forward, and they offer much less resistance when attacked from the side or rear. In

fact, they often don't even realize they're under attack, because often they're not designed to
detect the enemy from behind or from the side. In such cases, you can say that three sides
out of four are generally weak.

www.syngress.com

Hand-to-Hand Combat �9 Chapter 20 389

When you start planning, the most logical sensor to use to find the enemy is the ultra-

sonic sensor. Spin, go toward the closest object, and repeat. It seems perfect, but there are
some loopholes. Among them is the fact that they interfere with each other. If both you and
your opponent used the ultrasonic sensor at the same time, your robot would start reading
your opponent's signals and get confused.You could solve this problem by using Guy Ziv's

Ultrasonic ping method (see Appendix A).
Another issue is that you're trying to find a pile of LEGO pieces, and the ultrasonic

sensor is meant to find large solid objects. Possibly, you could mount the ultrasonic sensor on

its side so that you have a more narrowed range but a better resolution. This can be left as an

exercise to the reader.
A technique that is simpler but just as effective employs contact sensors, in the form of

either bumpers or antennas. Bumpers don't require any particular trick.You simply program

your robot to turn toward the obstacle instead of avoiding it. Design compact and smooth

bumpers devoid of any unnecessary protrusion, to reduce the chances of getting caught on

an enemy robot and dragged off the playing surface. With antennas you can use either touch

or rotation sensors, the latter being able to tell you more about the direction of the oppo-
nent. But with the latter, you will have to use the legacy rotation sensor because the N X T

motors have too much internal gearing to move from a light push. And you would have

wasted an entire motor!

Using Speed
Speed is an extremely important factor in the search for the enemy. Imagine two robots run-

ning freely on the sumo field, simply going straight until they find the border and change

direction randomly. Supposing that they have different speeds, the faster of the two has a
much greater chance of intercepting the other. For this reason, it's important not to have too
slow a robot. Find a compromise between pushing capability and speed.

The robots built around speed all have a common strategy: Crash into the opponent
repeatedly and use its m o m e n t u m instead of its strength. The resulting energy makes the
opposing robot lose contact with the ground, which gives your robot time to rear up and
assault again. One charge later, the enemy is often found helpless. Though these robots may
seem cheap, you have to appreciate how much experimentation it takes so that they do not

illegally destroy their opponents.

390 Chapter 20 �9 Hand-to-Hand Combat

Momentum is a physical quantity defined as the product of mass t imes
velocity. You can understand what it means through an example: You face a
person of your same weight and build that's trying to knock you down. If
you're both stationary, you have a good chance to resist. If, on the other
hand, you are s t a t i o n a r y and the other person is running toward you, you
will very likely go down.

Using a Transmission
Other robots use a transmission to get the best of both worlds: fast speed during the search

phase, and maximum push after the engagement. Sure, some robots will use a special trans-

mission ring included in some vehicle sets, but it was soon proven during a contest that it's

possible to make a sort of automatic gear shift even inside the strict rules of Mini Sumo.

Look at the assembly in Figure 20.3. It's not very solid, but it explains the principle: The

wheel on the right in the picture is geared with a shorter ratio than the main one, and

during normal motion it slips a bit because the robot is moving faster than the speed of the
idler wheel. When the robot slows down or stops for any reason, the faster wheel slips, and
at that point, the slowest one grips. Because it's mounted on a short independent beam with

a free end, part of the torque pushes the wheel down and consequently lifts the robot. This
mechanism is very fascinating to watch, but it's very difficult to understand just by looking

at the picture, so we encourage you to build it and try it out. Just remember that you need
two of these assemblies, one for each side, and a supporting wheel. The wheels in the N X T
kit can replace the ones in the picture.

www.syngress.com

Hand-to-Hand Combat �9 Chapter 20 391

Figure 20.3 An Automatic Gear Switch Assembly

Other Sumo Tricks
Many other tricks prove useful during a sumo contest. The ones most often used are meant

to lift the opponent, thus getting two positive effects: reducing or canceling the grip of its
wheel and transferring part of its weight on your robot. This class of method includes at least
two large families, one based on inclined planes and the other on counter-rotating wheels.

An inclined plane works like a wedge that slips under the enemy robot. It can have the
shape of some small slopes placed at the front side of the robot, or of a large inclined surface

that covers the whole robot. In the latter case, a LEGO baseplate is the better choice: Mount

it studs-down and you'll have a very smooth top surface to wedge under your opponent.

Counter-rotating wheels are very effective too, but they require an additional motor to

operate them. Be sure they don't touch the ground, though; otherwise, they'll counteract the

forward motion of your own robot? The combined effects of the front wheels with the push

of the robot may even overturn the opponent, a spectacular but rare event.

Getting Defensive
So far we have discussed attack strategies, but protecting the weak sides of your robots is

important as well.

392 Chapter 20 �9 Hand-to-Hand Combat

Every active defense system relies on the fact that you know what's happening around

you, and require some sensor to detect a possible attack. Depending on the rules of the tour-

nament, you might find yourself dealing with a limited number of input ports, requiring that

you carefully plan how to allocate them in regard to your navigation, attack, or defense sub-

systems. The simplest detecting system is a sort of large bumper that covers a whole side of

the robot. With this "ring" bumper, one touch sensor will be able to detect an attack from
any direction (see Chapter 9).

Another method of detecting the enemy is to check whether your motors have been

stalled. This is easy to do with the built-in rotation sensor of the servo motors. If you run

your motors, you can monitor their speed and rotation values. If the motors are under stress,

through software you can detect a stall condition and assume you are j ammed against some-
t h i n g ~ i n this case, the opponent. Then you can test each direction to know from which
side the opponent got you.

When you detect that you've been tackled, you have the option of either escaping or
facing your enemy. The first choice is best when fighting a slow, strong opponent, whereas

the second works well when it's your robot that has a strong push (though it's not always

easy to turn in place when being pushed). Some rules allow competitors to use more than

one program. Take advantage of this opportunity by preparing different versions to imple-

ment different strategies, and then select the one most suitable when you know which robot
you'll be facing in a given match.

Also consider passive defense systems, the kind that don't require any sensor or port. The
more obvious defense mechanisms pertain to the shape and size of the robot itself. A smaller
robot offers less surface area to an opponent than a larger one, and though a triangular shape

is more difficult to build, it's also more difficult to catch. Make the perimeter somehow
convex if you can, so as not to offer any holds that will help your opponent. Clearance from
the ground is important for the same reason: It reduces your enemy's chances of wedging
itself under your robot.

More sophisticated passive defenses include protruding beams or axles meant to keep the
enemy away from your robot's vital organs, freewheeling vertical wheels on the sides to neu-
tralize lifting wheels, and free horizontal wheels to allow your robot to slip away when
engaged on one side.

Testing Your Sumo
This phase is crucial to a good result. Start testing your robot on a pad similar to the tourna-

ment's to make sure it doesn't do senseless things in the most common situations. It should

detect the edge of the field when reaching it from any angle:You can't imagine how many

robots won a match because their opponents killed themselves!

When everything works well, you can start more advanced testing.You really need a
sparring partner, but it need not be a second robot. Many reasons suggest you use a fake

www.syngress.com

Hand-to-Hand Combat * Chapter 20 393

robot as a sparring partner, something you can move by hand to create any situation you
want. (Using a real robot, you'd end up testing both instead; plus, you risk not being able to
control specific scenarios.) A simple box does the trick, or a heavy book. Start by leaving the
fake robot still and in the middle of the field, and see what happens.Your robot should find
it, sooner or later, and push it off the pad. When this works, move the fake robot yourself to
test the defensive strategy of your robot, and its behavior at the edge of the pad, the most

dangerous area.
Remember that the perfect robot doesn't exist. For any winner of a contest, it's possible

to design an "antidote" robot capable of beating it.You just have to accept some compro-
mises in your project and make some assumptions about your opponents, hoping they won't
prove too far from reality.

Summary
If you have no previous experience in robotic sumo, you may think of it as a competition

based solely on brute force. We must confess that we also had many preconceptions our first
time out at a competition of this kind, but we had to change our minds. Force is indeed
important, but it typically proves useless when you're up against a good deal of intelligence.

These competitions have nothing in common with the kinds of events that feature
radio-controlled machines, called "robots," that try to destroy each other. These are not
robots, simply because they totally lack a distinctive robot property: autonomy.

The first important lesson that this chapter taught is that you must design your robot
with a strategy in mind, choosing the configuration that best suits your goal. Start examining

the rules, and then make a hypothesis about your opponents and devise a strategy to beat

them.Your opponents may be very different from how you imagined them, but this is not
important~what ' s important is that you build and program your robot to be consistent with
the strategy you chose. A perfect robot doesn't exist; in fact, situations in which Robot A
beats Robot B, which then beats Robot C, which in turn actually beats Robot A, are very
common in contests. And they're what make contests so interesting and instructive.

We hope you also understand the second important message of this chapter: When
building and programming your robot, make reliability your first priority. If you can beat a
block of wood in a sumo match, you're halfway to success!

This Page Intentionally Left Blank

396 Chapter 21 �9 Searching for Precision

Introduction
This chapter is dedicated to contests based on some specific capability. Occasionally, speed is
important, too, but not so much as in the competitions described in Chapter 19, and
although two or more robots may perform at the same time on the same field, physical con-
tact is not the main goal, as was the case in the competitions discussed in Chapter 20.

These capabilities include what we described in Part I as the most challenging tasks for
N X T robots: finding and grabbing objects (Chapter 11), and knowing precise positioning

(Chapter 13). The need to use them in a contest makes your mission even more demanding:
You must consider the interference that comes from sharing the playing field with other
robots that may voluntarily or involuntarily disturb the action of your robot. The recipe for

success is the same as that proposed in the previous two chapters. This applies to any kind of

contest: Study the rules, define a strategy, make a few assumptions about the opponents,
build a prototype, experiment with it, test the software carefully ... and rebuild everything
from scratch until you are satisfied. In other words, you need some ideas, some skills, and lots
of patience!

The last challenge described in this c h a p t e r ~ R o b o C u p Junior~shows an interesting
variation on the theme of object finding: It is the object i tself~the ball--that guides the
robot to its position, through the emission of IR light.You will discover that this change in
the nature of the problem is enough to simplify the robot's requirements considerably, to the
point where its software isn't so different from that used to implement the simple light-fol-
lowing algorithm.

Precise Positioning
The challenge of precise positioning requires that your robot go, or return, to a specific
point. The robot whose degree of error is smallest, wins.You can define many implementa-
tions of that simple statement, each one with its own peculiarities. As always, even a small
change in the rules can have radical effects on the difficulty of the challenge. A very simple
version is: Starting from a predefined point, the robots must move forward until they hit an
obstacle, then turn in place 180 degrees and return to the spot where they began. The

obstacle will be the same, at the same distance from the start for all the robots, and the con-
test may require many runs with different distances. It's important that the rules specify that

the robots must turn 180 degrees before returning to the starting point; otherwise, most of
them will simply go in reverse!

If you're the one who decides the rules, calibrate the difficulty of the contest by setting
the limit on the number of parts admitted. For example, a dual differential drive can be very
precise, but requires two differential gears. Limiting the equipment to just the N X T set will
make the contest fair to a larger number of participants, but more difficult.

www.syngress.com

Searching for Precision ~ Chapter 21 397

Have you any initial ideas about how you would make a precisely turning robot with

only N X T parts? At this point in the book, you should have many ideas. However, let's do

this exercise together. Starting from the mobility configuration, you can proceed by a process

of elimination: A simple steering is easy to make with parts from the standard N X T set, but

the small radius of turn and the lack of Ackerman's steering correction introduce unpre-

dictable slippage, which is very bad for precise positioning. A differential drive won't work

because of the lack of a differential gear in the standard set. So, you end up using a tribot

with one caster wheel.

A tribot with a caster wheel requires that you use a synchronized feature of the N X T
servo motor to run the robot along a straight line, relying on the caster to turn smoothly
while one of these motors rotates at a different speed to turn the robot.

With any solution, you may manage to go straight, but you still have to turn precisely

180 degrees. This is the most critical point, because even a small error in the angle will leave
your robot very far from the starting point. Do you remember what we said about tuning
the turning capability of robots in prior chapters? Use the distance between the wheels to

adjust the turning angle so that you have predictable encoder values of the N X T servo

motor to make a U-turn. Take some trial runs, and get a feel for the encoder values you will

need to make such a turn. Monitor the encoder and control this rotation of the motor to
ensure precise turning. Thorough testing is, as always, your ticket to success.

A challenge based on positioning may be made significantly more complex by simply

adding more segments and checkpoints to the route. For example, instead of a round trip,
you can prepare a triangular path--ask the robots to stop in any vertex and measure the
deviation between their actual positions and the expected ones. Each robot should have an
easily identifiable part to use as a reference point for measuring the starting and ending

points of the jou rney- - fo r example, a vertical axle with one end very close to the ground.

Shooting with Precision
In summer 2006, NXTasy.org created and hosted an innovative contest called "Throw Me!".
The contest required participants to throw a blue plastic ball from the N X T set as far as pos-
sible. The contest was worldwide and was open to all users with an N X T set. There wasn't
any specific place for the event and the participants had to send documentation of their

robot, including video and pictures showing the robot's performance. The participants pre-

pared their own field which, among other things, was required to have a calibrated line to

measure how far the ball landed.

The challenge was simple, but required the ball to land within about 5 centimeters of

the line! Think about i t - - w h e n the robot threw the ball, any small deviation in the throw

was going to be magnified multifold when it landed. To land close to the line, the throw had

to be reproducible with near-zero deviation! The challenge was a feat of robot precision and
strength at the same time.

www.syngress.com

398 Chapter 21 �9 Searching for Precision

A few months later, Mr. Barak took the prize with a whooping score of 11 meters. The
robot used a rotating arm that hit a free-falling ball. The rotating arm was allowed to build
momentum before the ball fell. The positioning of the ball, its fall under gravity, and the

point at which it touched the rotating arm were adjusted so that it would be thrown as far
as possible. It landed 11 meters from the robo t~r igh t on the 11-meter marker! You can find
more details, images, and video at the NXTasy.org Web site (see Appendix A).

Fine Motor Skills of Your Robot
First Lego League, popularly known as FLL, has used innovative ideas for creating contests.
These contests motivate participants to refine their robots'fine motor skills. The Nano Quest
theme of the 2006 FLL season is another noteworthy contest. Participants have several mis-
sions to accomplish, and limited time to accomplish them (for details, see Appendix A). It's a

daunting task to make a robot that can accomplish all the missions in this contest. Chances
are the winning team will have accomplished all of them, but rookie teams will probably

plan which missions to accomplish, and if time permits, they may stretch beyond to accom-
plish additional missions. Several times, the robots would have interchangeable modules to
accomplish specific missions. Time is critical, and thinking in terms of a single module to
perform more than one mission helps significantly.

Removing the Bricks
For the Individual Atom Manipulation mission from this contest, the robot has to remove at
least one white brick from a blue platform without removing any red bricks. The platform
has eight red bricks and eight white bricks. To get any points, the robot has to leave all eight
red bricks behind; leaving behind fewer than eight red bricks results in no points!

This is a complex challenge that requires that your robot be able to:

�9 Navigate the field and find the platform.

�9 Ascertain the correct bricks.

�9 Remove at least one brick from the platform.

Moreover, the platform is suspended on four rubber bands, so a hastily approaching

robot could knock everything down and lose points. Fortunately, plenty of aid is available for

the robot to reach the platform without bumping into it. All the navigation techniques
described in prior chapters would be an asset here. The field setup table has an edge, which

is distinctly black. The field mat has several lines and colored markings which represent land-

marks for absolute positioning, as described in Chapter 13. The positioning of sensors on the

robot needs to be well thought out, as there is not much space to maneuver around the
platform.

www.syngress.com

Searching for Precision �9 Chapter 21 399

The next difficulty comes from the bricks. The white bricks are in a predictable position
and they are tall, attributes on which a robot could strategize. But in order to rely on that,
the robot needs to be precisely positioned on the field. Any misalignment quickly knocks
the bricks over as the robot reaches them. If a brick falls off the platform, the team gets the
point. But if the robot just knocks it over and it remains on the platform, the brick is almost
impossible to remove (see Figure 21.1).

Figure 21.1 The Atoms Platform

Freeing the Magnets
The Atomic Force Microscopy is another challenging mission. The robot needs to free a

stuck nanotip. The nanotip has a magnet and so does the base, and they are stuck together,

forcing the nanotip to be bent into position.

Again, the robot needs to navigate the field, find the nanotip, locate its stuck magnets,

and free them. The navigational challenges are the same as those discussed in the preceding

section. Moreover, the robot has to be fitted with a module to separate the two magnets.You

may think that you could use the same module that removed the bricks to separate the mag-

nets, but alas! The base magnet is attached to the bot tom mat, and with that technique,

www.syngress.com

400 Chapter 21 �9 Searching for Precision

instead of separating the magnets, the mat lifts up.You really need a two-hands approach to
hold the base magnet down while lifting the top magnet.

The team N A N O RATS, which took the winner's trophy at the Virginia State
Championship this year, had some simple strategies for dealing with these challenges. Sally
and Bill Sylvester, coaches of the team, said their team made a robot with attachments on
both sides, and to achieve some missions, the robot ran in reverse. That saved them some

time in terms of exchanging the attachments. They reduced their initial four minutes of run

time to accomplish six of nine missions to two and a half minutes. For the state champi-

onship, they had their robot optimized so well that they had a few seconds left to do one
more mission and get additional points.

The team relied quite heavily on synchronized motors to run their robot in a straight
line. R e m e m b e r how to compute distance traveled based on number of rotations? The one

with 'PI' in the formula? That was the method they used to ensure that their robot stopped

at the right place. They launched the robot from the base, pointing to the mission, and pro-

grammed the robot to run straight to the precise location and then operate on the mission
(see Figure 21.2).

Another factor that plays silently in robot precision is battery voltage. If
you're running your robot using timing, it is important to maintain consistent
battery voltage. You can do this by fully charging up your rechargeable bat-
tery before each run or maintaining a supply of batteries kept at a consistent
voltage. Fortunately, the new NXT servo motors include built-in encoders
that you can use to ensure greater precision for distance and turns, even at
varying battery strength.

www.syngress.com

Searching for Precision �9 Chapter 21 401

Figure 21.2 The NANO RATS' Robot Approaching the Stuck Nanotip

Fire Fighting in a Maze
Trinity College in Connecticut hosts a Fire Fighting Contest which is open to all kinds of

robots. The participating robot needs to find its way through a maze that represents a house,

find a lit candle that represents a fire, and extinguish the candle. Points are awarded based on

several criteria, including shortest time (for details, see Appendix A). Unlike the FLL field,
for the most part, the maze flooring is a featureless terrain and has no markings to aid in

navigation. Instead, there are walls, so you could use several of the techniques we discussed

in Chapter 17 to navigate the maze. Simply sliding the robot along the walls would work,

but there are penalty points for that. Several of the robots use ultrasonic or infrared sensors

to determine distance from walls.

Finding and extinguishing the candle is also challenging. The robot could use a light

sensor to detect the flame, but it needs to be fairly close to the candle before it can reliably

detect it. In doing so, there is always a fear of bumping into the candle and tipping it over.

The candle is encircled with a line at a 30 cm radius, which could aid in determining when

to stop. In fact, per the contest rules, the robot must step inside that arc before extinguishing

www.syngress.com

402 Chapter 21 * Searching for Precision

the candle. Blowing air to extinguish the candle is another option. That would work for a
candle, but it's not a reliable proposition for a real-life fire.

Because the competition is open to all, we should mention the difference between N X T
robots and other robots. In general, non -NXT robots have options for integrating high-
powered batteries and motors with sophisticated processors and sensors, which helps to
improve precision and speed. On the other hand, the ease of building robots using the N X T
is undeniably an advantage for first-time entrants.

Playing Soccer
RoboCup Junior is a simplified form of soccer, a rather suitable game for small robots. The
robots don't actually kick the ball, but instead push it toward the goals. The required capabil-
ities are similar to finding an object (a ball), and knowing where you need to take it to reach
the opponent's goal (see Appendix A for Web site details). The field is covered with a simple
linear gradient, black at one end and white at the other, and there are walls all around, with
goal posts. All of this can be used in navigation.

The ball is a special, active ball: Made of clear plastic, it is filled with infrared LEDs and
batteries to be detected by light sensors. With a light sensor, the robot can turn in place until
the sensor reads the expected value, which would be the direction of the ball.

The field mat gradient can be used with the techniques we described in Chapter 13.
This geometric pattern has the property that, if you follow the darkest path from any point,
you arrive at the black edge, whereas if you choose the lighter path, it drives you to the
white edge. Using this gradient, it's very easy for robots to reach their desired goals by
employing a very simple navigation algorithm.

The program is not too difficult to write. Make your robot turn in place, searching for
the ball until it finds it (the algorithm is actually very similar to a light-following algorithm).
If it doesn't find it, make it move a bit in any random direction and look around again.
When you find the ball, move the robot forward to catch it and then start moving toward
the opponent's net.

www.syngress.com

Searching for Precision �9 Chapter 21 403

Summary
The competitions we talked about in this chapter require some capabilities that we described
in Chapter 1-13 of the book as being the most challenging to implement: finding objects,
directing with precision, knowing where you are, and navigating precisely.

If these activities prove difficult to implement when you build a robot for yourself, situ-
ating them in the context of a competition makes your mission even more difficult. This
happens because you must push the performance of your robot to its maximum.You have to
consider all the details, optimize the software, and reach the highest possible level of relia-
bility and precision.

The soccer competition we described in this chapter is a good example of how a few
changes can radically affect the solution to a problem. It also shows the practical application
of two techniques described in Chapter 13 regarding absolute positioning: the use of an IR.
beacon, and a pad with a special pattern that eases navigation.

These challenges require complex behavior composed of many different actions that
need to be coordinated together well. If you decide to take up the challenge, we suggest that
you think of both your hardware and your software in terms of subsystems. This way, they
will be easier to test, debug, and maintain.You also could design your hardware modules to
be interchangeable during the competition to perform different missions. In addition, you
could make your program modular with a top-level program that manages small subroutines
corresponding to the basic actions the robot has to perform: navigation, object detection,
and object collection. Mastering this kind of challenge won't be easy, but as with most diffi-
cult things in life, your satisfaction will be directly proportional to the effort you expend!

This Page Intentionally Left Blank

406 Appendix A , , Resources

Introduction
There are quite a few reference materials to be found regarding MINDSTORMS inven-
tions, including some very good books, and hundreds of Internet sites, and numerous blogs
that cover specific topics and show interesting models. In this appendix, you'll find a section
about books, another one about links of general utility, and a section specific to each chapter
of this book (many of the quoted sites pertain to more than a single chapter topic, so browse
through them all). We apologize in advance for the significant number of interesting sites
that we surely (and unintentionally) omitted from the list.

Every link of this appendix has been checked, but as you know, the Internet is a
dynamic animal, so we cannot guarantee that all the links will be still valid at the time you
read the book. If you find any broken links, use the descriptive information we provided
about each site address to hunt for it using your favorite search engine.

A few of the links point to commercial sites or to sites that not only provide informa-
tion about the making of some custom part but also sell a kit or the finished product. We
have no direct or indirect interest, nor any connection with them; we included the links
simply as a help to the reader.

Bibliography
The Unofdicial Guide to L E G O M I N D S T O R M S Robots, by Jonathan B. Knudsen;
O'Reilly & Associates, 1999. The first to appear on the market, Knudsen's book is
still a very good resource for introducing readers to the MINDSTORMS world. It
covers many topics, ranging from construction techniques to programming with
different languages.

Dave Baum's Definitive Guide to L E G O M I N D S T O R M S , by Dave Baum and Rodd
Zurcher (Illustrator); Apress, 1999. Baum is the creator of NQC, the most successful
alternative programming environment for the RCX. In this book, he not only
explains how to use N Q C but also explores many building and programming tech-
niques.

Extreme M I N D S T O R M S : A n Advanced Guide to L E G O M I N D S T O R M S , by Dave
Baum, Michael Gasperi, Ralph Hempel, Luis Villa; Apress, 2000. Four gurus of the
independent MINDSTORMS community introduce you to the secrets of NQC,
legOS, pbForth, and to the making of custom sensors.

Creative Projects with L E G O M I N D S T O R M S , by Benjamin Erwin; Addison-Wesley,
2001. Erwin invites the reader to be creative, to explore different approaches, and
even use different materials. He also covers topics like ROBOLAB, not covered in
any other book.

www.syngress.com

Resources �9 Appendix A 407

Joe Nag, ata's LEGO MINDSTORMS Idea Book, by Joe Nagata; No Starch Press,
2001. Nagata is without a doubt a great designer. In his book, he steers you step by
step through the building of some instructive and efficient models.

LEGO MINDSTORMS: The Master's Technique, by Jin Sato; No Starch Press, 2001.
This is a great book, containing both general building suggestions and program-
ming tips. It also includes step-by-step instructions on how to replicate MIBO, his
famous robotic dog.

General Interest Sites
LEGO M I N D S T O R M S (h t t p : / / m i n d s t o r m s . l e g o . c o m)

The first site to mention is, of course, the LEGO MINDSTORMS official site. It
contains technical tips, a gallery of inventions, events, contests, answers to frequently
asked questions (FAQs), and more. The official LEGO MINDSTORMS FAQ site
is: http://mindstorms.lego, com/products/whatis/faq.asp.

L U G N E T (www.lugnet .com)

The LEGO Users Group Network (LUGNET) is the most comprehensive
Internet resource for LEGO, and it's difficult to describe in a few words. It features
a database containing all the LEGO sets ever released, as well as a reference list
citing all the single LEGO parts. But, more important, its newsgroups are the
meeting point of LEGO fans of any age and from any part of the world, and it's
one of the friendliest places on the Internet. Don't miss the LUGNET newsgroup
(http://news.lugnet.com/robotics), the place where you can ask any number of
questions and have them answered with completeness, competence, and patience.

LEGO Set/Parts Reference (www.peeron .com)

A valuable resource for sourcing sets and part numbers/images for LEGO sets.

NXTasy. ors

An unofficial LEGO MINDSTORMS blog focused on LEGO Robotics, including

the NXT.

The N X T STEP (h t tp : / / thenxt s t ep .b logspot . com/)

An unofficial LEGO MINDSTORMS blog focused on LEGO Robotics, including

the NXT.

N X T b o t . c o m

An unofficial blog focused on various robotics interests, including the LEGO
Robotics and the NXT.

www.syngress.com

408 Appendix A �9 Resources

B N X T (www.bnxt .com)

An unofficial LEGO MINDSTORMS blog focused on LEGO Robotics, including
the NXT.

Brickshelf (www.brickshelf .com)

Brickshelf is a site that offers everybody the extraordinary opportunity of having
free space to show off his or her own LEGO models.

The official Web site for this book is at www.syngress.com/solutions. Check it
out for lots of additional features and resources.

Chapter 1 Understanding LEGO Geometry
LEGO Geometry
(www. brickshelf, corn/gallery/GJans s on/Geometry/legogeometry, doc)

Gustav Jansson created a document that introduces the basics of LEGO geometry.

LEGO on My Mind (http://homepages.svc.fej.hvu.nl/brok/legomind)

Don't miss Eric Brok's site; it is filled with explanations and suggestions. LEGO
geometry is just one of the many topics covered here.

Studless building (http://thenxtstep.blogspot.com/2006/06/studless-part-
ii-hybrid-templates.html)

Brian Davis explains some concepts of studless building geometry and how they
relate to studded beams.

Chapter 2 Playing with Gears
Rice University (www.owlnet.rice.edu/~elec201/Book/legos.html)

A LEGO Tutorial proving a variety of information on the fundamentals of LEGO
design and gearing.

Resources �9 Appendix A 409

Technica (http : / / isodomos.com/technica/registry/ gear/ gear_2.php)

This site contains a repository of the various LEGO gears that have been produced
over the years. It includes dates and model numbers.

Sergei Egorov's LEGO Geartrains
(www. malg i l , corn/esl / lego / gear trains, html)

Egorov's site provides a table listing useful ways to position LEGO gears so that

they mesh properly.

Chapter 3 Controlling Motors
Philippe (Philo) Hurbain (www.phi lohome.com/)

Hurbain has hacked the N X T and provides a look at things like motor internals,

hardware interfacing, custom sensors, etc.

Brickshelf Gallery (www.brickshelf.com/cgi-bin/gallery.cgi?f=226241)

This site contains recent introductions of Power Functions by LEGO, such as con-

tain motors, IR controller, and battery box.

N X T Motor Characteristics
(http: / /web . mac. corn/ryo_wat an ab e / iWeb/Ryo % 27 s % 20 Hol i d a y / N X T %

20
Motor.html)

Visit this site for a mathematical analysis of N X T motor's performance by Ryo

Watanabe.

Chapter 4 Reading Sensors
PlastiBots (www.plastibots.com)

Dave Astolfo's LEGO M I N D S T O R M S robotics site contains pictures and docu-

mentation on all of his robots (including the BrickSorter on the front cover of this

book). There are also a number of reviews on aftermarket sensors with additional

information and pictures.

410 Appendix A * Resources

Techno-Stuff (www.techno-stuff.com)

Pete Sevcik creates and sells LEGO M I N D S T O R M S compatible sensors and con-

trols for both the N X T and R C X systems. Check it out if you are looking to

expand your robot's abilities.

Mindsensors (www.mindsensors. tom)

You can find a large variety of aftermarket sensors for the NXT, R C X and VEX

systems.

HiTechnic (www.hitechnic.com)

A variety of LEGO N X T and R C X compatible sensors can be purchased from

HiTechnic.

Vernier (www.vernier. com/nxt/)

Vernier provides an adapter for the LEGO N X T to be able to use more than 40 of

its own analog sensors.

MindStorms RCX Sensor Input Page (www.extremenxt.com/lego.htm)

Michael Gasperi's site about LEGO M I N D S T O R M S N X T and R C X senso r s~

the starting point for any investigation about this component . It also contains infor-

mation on creating your own homebrew sensors.

Sivan Toledo (w w w . t a u . a c . i l / ~ s t o l e d o / l e g o /)

Toledo provides some interesting creations on his site, where he pushes the limits of

the NXT. He also provides some excellent tutorials on I2C interfacing and creating

your own custom sensors with it.

Krystian Majewski (http://kisd.de/~krystian/nxt/)

This site features some interesting N X T projects. Specifically, the JennToo radar

where Ma]ewski uses the N X T ultrasonic sensor to map the area as it scans. While

it's mapping and scanning, it displays the results on the screen as a visual representa-

tion of the surroundings.

Philippe (Philo) Hurbain (www.philohome.com/sensors.htm)

Hurbain has a variety of sensors that can work with both the N X T and R C X . Be

sure to browse his site as there are many interesting things there.

Resources �9 Appendix A 411

Chapter 5 What's New with the NXT
Ross Crawford's Tic-Tac-Toe (www.br-eng. info/words/ index.php/cate-
g o r y / m o c / n x t /)

There are few other games on this site, too.

N X T Mobile Applications
(http: / / mindstor ms. lego. corn/overview/Mobile % 2 0Applic ation, aspx)

The software runs on a Java-capable mobile phone to use as a remote control for

NXT.

NeXTScreen by John Hansen (http:/ /bricxcc.sourceforge.net/)

The "Programmable Brick Utilities" section on this site provides a link to informa-

tion about several N X T utilities, including NeXTScreen.

Wiimote Controlled Robot by Jose Bolafios
(www. te cheblo g. corn/index, p h p / te ch- gadget /wi imo te- c ontroUe d-rob ot)

The Wiimote and N X T are connected via a computer running a .NET program.

Coco5 by Martyn Boogaarts
(http: / / mindstor ms.lego, c o m / M eetMD P / Mar tyn. aspx)

This robot has a camera mounted on it, and it can take pictures when it detects

someone nearby.

NXTiiMote Controller by Philo
(http: / / philohome, corn/nxti imote / ni. htm)

This controller transmits spatial information to a remote N X T using Bluetooth.

Mini Block Library (ht tp: / /mindstorms. lego .com/support /updates /)

From this site, you can download several of software updates to M I N D S T O R M S

NXT.

Paul Tingey's Wii-like Controller
(www. minds ens or s. com/Wii_l ike_C ontroller, htm)

This controller is wired to the N X T and functions like Wiimote, driving the

R.oboArm T-56.

www.syngress.com

412 Appendix A �9 Resources

Chapter 6 Building Strategies
LEGO MINDSTORMS NXT Building Instructions
(http://mindstorms.lego.com/buildinginstructions/)

LEGO provided building instructions and tips for robots such as a classic clock and
a sound robot.

Ldraw.org (www.ldraw.org)

LDraw is a freeware program that can create LEGO models in 3D on your com-
puter screen. Did you ever dream of working with an unlimited supply of any
LEGO part in any color?

MLCad (http://mlcad.ldraw.org)

Michael Lachmann's MLCad is a great (and free) CAD program for creating
LEGO-like building instructions of your own models. The MLCad site has been
recently incorporated into the Ldraw.org domain.

Chapter 7 Programming the NXT
LEGO NXT-G (http://mindstorms.lego.com)

LEGO's MINDSTORMS NXT product, including NXT-G programming graph-
ical interface.

LEGO Robolab (www.legoeducation.com)

LEGO Education RobotC (www.robotc.net)

Developed by the Robotics Academy at Carnegie Mellon University, RobotC is an
easy-to-use text-based programming language with many powerful features.

Ralph Hempel pbLUA (www.hempeldesigngroup.com/lego/pbLua/)

Ralph Hempel is the sole developer of the pbLUA application. Having developed a
version of the FORTH language (pbFORTH) for the RCX, Hempel is well expe-
rienced with the MINDSTORMS products.

John Hansen~NBC & NXC (http://bricxcc.sourceforge.net/nbc/)

Next Byte Codes (NBC) is a simple language with an assembly language syntax
that can be used to program LEGO's NXT programmable brick. Not eXactly C

Resources �9 Appendix A 413

(NXC) is a high-level language, similar to C, built on top of the NBC compiler. It

can also be used to program the N X T brick.

LeJOS NXJ (http://lejos.sourceforge.net/)

LeJOS NXJ is currently in alpha release and is a subset of the Java language for the
NXT. A core team of about four developers is working on the leJOS for the NXT.
Most of the members of this team were already developers of the leJOS version for

the 1KCX.

NXTasy.org (www.nxtasy.org)

For a more thorough list of current development environments, visit NXTasy.org.

Chapter 8 Playing Sounds and Music
Bricx Command Centre (bricxcc.sourceforge.net/)

This site provides the brick piano tool for creating N X T Melody files, as well as

the WAV21KSO and MIDIBatch and RMDPlayer utilities.

Sivan Toledo's Clap Counter (www.tau.ac.il /~stoledo/lego/Clapeounter/)

This site includes a car that makes musical sounds through a speaker connected to

the output port of an 1KCX.

Katherine Anderson's SnackBot
(mindstor ms.lego, com/M eetMD P /KatherineAnder s on. aspx)

On this site you'll find a robot that scoops dog food into a bowl then emits a high-
pitched tone to let the family dog know it's time to eat.

Note Names, MIDI Numbers and Frequencies
(www.phys.unsw. edu. au/'--jw/notes.html)

This site contains a table that gives the frequency of any standard keyboard note

and its MID I number.

Chapter 9 Becoming Mobile
Bryan Bonahoom www.funtimetechnologies.com/teamb2

This site is home of some neat N X T creations, including the W.O.RR Tic-Tac-Toe

playing robot.

414 Appendix A �9 Resources

Laurens Valk (www.freewebs.com/laurens200/)

This site has a collection of robots built with LEGO MINDSTORMS. Some of

them include building instructions.

Steve Hassenplug (www.teamhassenplug.org/)

Hassenplug is the designer of many excellent robots. Check out ht tp ' / /mind-
storms.lego.com/MeetMDP/SteveH.aspx for details on his holonomic platform

OMNI.

The Straight and Narrow (www.oreillynet.com/pub/a/net-
work/2000/05/22/LegoMindstorms.html)

Jonathan Knudsen's article is about using a differential drive to go straight. Even
though this is an older article, the concepts are still the same with the NXT.

Doug's LEGO Robotics Page (www.visi .com/~dc/index.htm)

Although this site contains tLCX-based content, there are many nice robots here
that will inspire you to try something with the NXT.

Ackerman Steering
(http: / /www. nationaltbucketalliance, corn/t e ch_info / chassis / acker man/A
ckerman.asp)

A nice write-up of Ackerman Steering by George Barnes.

Chapter 10 Getting Pumped: Pneumatics
Ralph Hempel: www.hempeldesigngroup.com/

Christopher R. Smith: www.brickshelf.com/cgi-
bin/gallery, cgi?m = Littlehorn

C. S. Soh: w w w . f i f t h - r . c o m / c s s o h l /

C. S. Soh's site is subtitled ". . .where air is power." This is the most important refer-

ence for LEGO pneumatics on the Web.

Kevin Clague: www.kc l ague .ne t /

Clague is known in the LEGO AFOL community as one of the leading experts on

pneumatics. Check out his site for some of his amazing creations.

TECHNIC Double-Acting Compressor
(www. hemp elde signgro up. com/lego / c ompres s or/index.html)

Resources �9 Appendix A 415

This site is the home page of Ralph Hempel's famous double-acting compressor.
The same site also contains his Pressure Switch
(www. h empel designgro up. c o m/1 ego / p ressureswitc h/in dex. h tml).

Sergei Egorov's LEGO Pneumatics Page
(www. m algil, corn/e sl/ lego / pneumati cs. html)

This is a nice page with detailed plans for a double-acting compressor and pneu-

matic switch.

LEGO Construction Site~Ideas
(www.telepresence.strath.ac.uk/jen/lego/ideas.htm)

It's difficult to find a place in this appendix for Jennifer Clark's wonderful site

because it covers so many aspects of robotics. Her page of ideas contains many
useful suggestions about pneumatics, but don't miss the other tips and her models

as well!

Alex Zorko (www.nicjasno.com/)

Zorko has some inspiring model cars built--many of which use pneumatic
engines. Look at his site to find many great samples of pneumatic building, instruc-
tions, and videos.

Chapter 11 Finding and Grabbing Objects
L E G O M I N D S T O R M S N X T L o g

This site is a central repository for fan-built LEGO M I N D S T O R M S N X T

Robots.

Chapter 12 Doing the Math
Numerical Methods
(http: / / tonic, physic s. sunysb, edu/docs / n u m . m eth. html)

This Web site covers all aspects of numerical analysis, although finding what you're

looking for may require some time.

Introduction to Time Series Analysis (www.itl .nist .gov/div898/hand-
b o o k / p m c / secti on4 / p m c 4 .htm)

www.syngress.com

416 Appendix A �9 Resources

An index page from the NIST/SEMATECH Engineering Statistics Internet
Handbook about the methods used to analyze time series. It includes moving aver-
ages and exponential smoothing.

What's Hysteresis?
(www.lassp. cornell, edu/sethna/hysteresis/WhatIsHysteresis.html)

Jim Sethna explains hysteresis in laymen's terms and provides some examples.

Chapter 13 Knowing Where You Are
Probabalistic Localization with the RCX by Dr. Lloyd Greenwald
(www. cs.hmc.edu/roboteducation/itcsl_RCXparticlefilteringWkshp.pdf)

Workshop materials prepared by Dr. Lloyd Greenwald (with help from Babak
Shirmohammadi), for Thinking Outside the (Desktop) Box, National Science
Foundation Workshop, University of Mississippi.

Where Am I (www-personal.engin.umich.edu/~ohannb/position.htm)

The site where you can download the not-to-be-missed "Where am I?~Systems
and Methods for Mobile Robot Positioning" by J. Borenstein, H. R. Everett, and L.
Feng.

Using PID-Based Technique for Competitive Odometry and Dead
Reckoning (www.seattlerobotics.org/encoder/200108/using_a_pid.html)

An excellent article written by G. W. Lucas about using the proportional, integral,
and derivative (PID) approach in odometry.

JP Brown's Serious LEGO (http://jpbrown.i8.com/)

Here, Jonathan Brown describes the Laser Target we mentioned in Chapter 13.
Although much of his work is done with the RCX, it is well worth a visit as the
ideas and principles behind LEGO MINDSTORMS robot building are still similar.
Don't miss his wonderful creations, especially his world-famous Rubik's Cube
solver.

Robotics Introduction
(www. re stena, lu / convict/Jeune s/Rob oticsIntro, htm)

Boulette's Robotics Page is one of those sites difficult to classify because it contains
useful tips and interesting projects in many different areas. We chose to place it here
for its discussion on positioning and for its description of highly specialized sensors

w w w . s y n g r e s s . c o m

Resources �9 Appendix A 417

used for the task: laser emitters and decoders, compasses, and infrared-ultrasonic
beacons.

Chapter 14 Classic Projects
Line Following Samples (www.bnxt.com/paper/line_follower)

This site provides a few different approaches to line following algorithms in NXT-G.

Dead Reckoning Wiki (http://en.wikipedia.org/wiki/Dead_reckoning)

This site contains a Wiki explanation of dead reckoning with lots of information
and links.

Chapter 15 Building Robots That Walk
Kevin Clague (www.kclague.net/)

One of the most well known pneumatic/biped robot builders in the community,
Clague has been involved with numerous books and is respected for his experience
in bipeds.You can also find information on his site about tools he has authored for
LPUB, a tool for the rendering of LEGO for building instructions.

Joe Nagata Walker ND1
(http: //web.mac. c om/j o enagata/iWeb /MindstormsNXT/Welt ome. html)

Joe Nagata has published a number of MINDSTORMS R C X and NXT books
and has published some NXT creations on his site.You will have to bear through
some translation issues, but using the Google Translate tool should provide enough
assistance for you to follow along.

Miguel Agullo (http://technicpuppy.miguelagullo.net/)

A nicely done site with some excellent creations, videos, instructions, etc.

Chapter 16 Robotic Animals
Mac Ruiz (http://mobildefencelab.blog.homepagenow.com/
?txnid-77e675814ba675d5741a3632aa05a756)

Ruiz is the creator of a number of interesting robots, including the monkey and
mouse in Chapter 16 of this book.

r

w w w . s y n g r e s s . c o m

418 Appendix A �9 Resources

LEGO.com's N X T L O G listing o f animals
(http: / / minds tor ms.lego, c o m / n x t l o g / p r o j e ctlist, aspx? S earchText = animal)

Yoshihito Isogawa (www.isogawastudio .co. jp / legostudio/ index.html)

You will find some excellent ideas at his site (use the translator option at the
bottom).

Chapter 17 Solving a Maze
Guy Ziv's M a z e R u n n e r solving a m a z e built o f piles o f books:

http: / / nxtasy, o rg/2007 / 03 / 21 / nxt-mazerunner/

Maze Solving Algor i thm
(www. lb oro. a c. uk /de pa r tmen t s / e l / rob oti cs / Maz e_S olver, html)

A description of the Bellman flooding algorithm.

Micromouse: Maze Solving
(www.cannock.ac .uk/ - - l~e teh/micromouse/maze_solv ing .h tm)

This site is dedicated to Micromouge maze-solving competitions. The page we
mention is specifically about maze-solving algorithms.

Think Labyrinth: Maze Solving
(www. astrolog, o rg / l aby rn th / a lg r i t hm, htm)

This site provides a nice variety of maze types and algorithms/ideas for how to go
about solving them.

Chapter 18 Drawing and Writing
Logo Foundat ion (h t t p : / / e l . w w w . m e d i a . m i t . e d u / g r o u p s / l o g o - f o u n d a -
t i o n / i n d e x . h t m l)

The Logo Foundation Web site: a place to find information and resources useful in
learning and teaching Logo.

Haiku Program (h t t p : / / s eve red . t en t ade .ne t / r peake / a r ch ives /p rog ram-
ming /ha iku .h tml)

C source for an automatic Haiku writer.

www.syngress.com

Resources �9 Appendix A 419

Chapter 19 Racing Against Time
The Nor theas t Indiana R o b o t Games (NEIRG)
(w w w . s c i e n c e c e n t r a l . o r g / N E I R G . h t m)

ChiBots, Chicago Area Robot ics Groups (www.ch ibo t s . o rg / index .php)

Central Illinois Robot ics Club - (h t t p : / / c i r c . m t c o . c o m /)

Lafayette L E G O Robot ics Club

(http: / / co bweb. ecn. purdue, edu/~-an d y / L A F L R C / B L O CKS andB O T S. h t m
l)

RTLToronto (h t t p : / / p e a c h . m i e . u t o r o n t o . c a / e v e n t s / l e g o /)

Chapter 20 Hand-to-Hand Combat
No Screwdrivers Needed (h t t p : / / s t a g e 6 . d i v x . c o m / N o - S c r e w d r i v e r -
Needed/)

A video site with excellent videos of N X T and R C X Sumo matches.

NXTasy (www.nxtasy.org)

NXTasy is a blog that contains a NXT-G code repository for numerous custom
blocks, including an Ultrasonic Ping Block created by Guy Ziv. It allows you to
run 2 Ultrasonic sensors that don't interfere with each other.

Lugne t (www. lugne t . com)

This discussion site for all things LEGO includes a way to find a Sumo contest and
other events in your area.

Philo Hurba in (www.ph i lohome .com)

This site contains many example robots and hacks, including a way to expand port
A for more motors.

www.syngress.com

420 Appendix A �9 Resources

Chapter 21 Searching for Precision
Throw Me Contest at NXTasy.org

(www. nxt a sy. org/chal lenges/chal lenge-no- 1- throw-me/)

The rules, winners, images, and videos of the contest held in the summer of 2006.

Fire Fighting Robot Contest at Trinity College

(www. trine o11. edu/events / robot/default.asp)

The robots must navigate through a maze, find a lit candle, and extinguish the

flame.

Playing Soccer at RoboCup Junior (http:/ /rcj .sci .brooklyn.cuny.edu/)

A team of autonomous mobile robots plays simplified soccer games in an enclosed

field.

First LEGO League (www.firstlegoleague.org/)

On this site you can apply math, science, and technology to solve real-world prob-
lems and have fun.

Maxwell's Demons--Off ic ia l Rules
(http: / / news.lugnet, corn/org /us / smart /?n-2 2)

David Schilling's original post about the rules concerning his Maxwell's Demons

competition.

L E G O Robots: Challenge
(www. cs. u u. nl/~qmarkov/lego / challenge / in alex. html)

The account of a soda can retrieval challenge at the Department of Computer
Science at Utrecht University (in the Netherlands).

"0

"0

I'D

t~

422 Appendix B �9 Matching Distances

Legend:

�9 Each cell of the table contains three data: the distance in LEGO units
(studs), the quality of the matching, and the resulting angle in degrees.

�9 Distances are measured excluding the starting point. (For example, if one
peg is in the first hole of a beam and another is in the tenth, the distance
is nine units.)

�9 The quality of the matching is expressed with a symbol that reflects the
difference between the actual distance and the closest perfect match,
expressed in LEGO units, according to the following scheme:

Symbol Meaning Maximum Tolerance

P Perfect match 0.00 studs
V Very good 0.02 studs
G Good 0.04 studs
N Not so good 0.06 studs
B Bad 0.08 studs

H e i g h t

in

Br icks

and

Plates

1 113

1 213

2 113

2 2/3

3 113

3 213

4 113

4 213

5 113

5 213

6 113

6 213

7 1/3

0 I 2

2 P 9 0 ~

3 G 7 0 ~

4 P 9 0 ~

6 P 9 0 ~

8 P 90 ~ 8 B 83 ~

6 N 70 ~

9 G 7 7 ~

3 4 5 6 7 8

5 P 53 ~

6 V 60 ~

7 B 6 5 ~

6 N 4 8 ~

9 N 6 3 ~

6 B 33 ~

7 B 44 ~

7 V 3 1 ~

8 B 4 1 ~

9 B 4 9 ~

I 0 P 53 ~

8 B 30 ~ 9 N 27 ~

9 G 3 9 ~

1 0 P 3 7 ~

10 N 46 ~

11 G 4 4 ~

11 B 5 0 ~

Base in Studs

9 10 11 12 13 14 15

9 B 8 ~ 10 B 7 ~ 11 B 6 ~ 12 N 6 ~ 13 N 5 ~

10 V 26 ~ 1 1 B 24 ~

12 V 24 ~ 13 B 22 ~

13 B 23 ~ 14 V 22 ~

11 N 3 5 ~

13 B 32 ~

1 4 V 3 1 ~

12 N 42 ~

13 N 40 ~

16 17 18 19

14 N 5 ~ 15 N 5 ~ 16 N 4 ~ 17 N 4 ~ 18 G 4 ~ 19 G 4 ~ 2 0 G 3 ~

16 B 6 ~ 17 B 5 ~ 18 B 5 ~ 19 B 5 ~ 20 B 5 ~

15 B 20 ~

15 B 22 ~ 16 V 20 ~ 17 N 19 ~

18 G 19 ~ 19 G 18 ~ 20 B 18 ~

20 N 19 ~ 21 V 18 ~

15 N 30 ~ 16 B 28 ~

17 P 28 ~

18 B 28 ~ 19 G 26 ~

20 G 26 ~ 21 B 25 ~
,

Continued

H e i g h t

in
Bricks

and

Plates Base in Studs

7 213 10G 67 ~ 11 V 57 ~ 1 6 B 3 5 ~ 22 V 25 ~

10 N 73 ~ 17 G 34 ('

8 113

8 213

9 113

9 213

10 113

10 213

11 113

11 2/3

12 113

12 213

10 P 90 ~ 10 N 84 ~

12 P 90 ~ 12 N 85 ~

14 P 9 0 ~ 14 G 8 6 ~

I I V 8 0 ~

i

i !
1 3 N 8 1 o

15 B 82 ~

1 2 V 7 5 ~

14 B 78 ~

I
13 G 72 ~

1 5 N 74 ~

13 P67 ~

1 6 V 7 2 ~

12 V 60 ~

13 N 63 ~

15 N 62 ~

1 6 V 6 4 ~

16 G 68 ~

i

14 N 50 ~

1 5 P 5 3 ~

16 G 56 ~

17 V 58 ~

15 V 4 8 ~

16 B 51 ~

1 6 V 4 7 ~ ~

1 7 G 4 5 ~

19 N 51 ~

1 8 G 44 ~

20 V 49 ~

1 8 B 39 ~

19 G 4 2 ~

1 8 G 34 ~

19 G 38 ~

20 V 4 1 ~

21 B 4 5 ~

20 B 31 ~

20 P 37 ~ I

21 N 36 ~

21 V 4 0 ~

22 G 39 ~

22 B 44 ~

21 V 31 ~

23 N 39 ~

22 N 31 ~ 23 B 29 ~

i

24 G 33 ~

18 V 60 ~ 21 G 48 ~ 23 B 43 ~

13 113

13 213

16 P 90~ 16 G 86 ~
i

17 B 8 0 ~ 19 N 62 ~

20 P 53 ~

21 B 5 2 ~

22 B 47 ~

C o n t i n u e d

U1

H e i g h t

in

Br icks

and

Pla tes

14 1/3

14 2/3

15 113

15 213

16 113

16 213

17 113

17 213

18 113

18 213

19 113

19 2/3

0 I 2 3 r 5
i

18 P 90 ~ 18 G 87 ~

20 P 90 ~ 20 G 87 ~

22 P 90 ~ 22 G 87 ~

24 P 90 ~ 24 G 88 ~

1 9 G 8 1 ~

21 V 82 ~

23 V 83 ~

18 N 77 ~

i !

20 V 78 ~

22 G 80 ~

24 B 80 ~

!
6 !7

19G 72 ~

19 B 75 ~

21 V 76 ~

22 G 74 ~

23 N 77 ~ i

24 G 75 ~

19 N 6 8 ~

20 B 70 ~

22 N 71 ~

25 P 74 ~

19G 65 ~

20 B 67 ~

23 G 70 ~

22 B 66 ~

23 G 67 ~

Base in Studs

10 11

21 N 61 ~

22 V 63 ~

23 B 64 ~

25 N 64 ~

26 G 65 ~

26 P 67 ~

21 G 5 5 ~

22 G 57 ~

23 V 59 ~

24 V 60 ~

25 N 61 ~

27 N 61 ~

25 B 56 ~

26 B 58 ~

24 N 51 ~

25 P 53 ~

26 G 55 ~

27 N 56 ~

28 G 58 ~

25 V 50 ~

26 B 52 ~

25 N 47 ~

26 N 49 ~

26 G 46 ~

29 N 52 ~

30 P 53 ~

27 V 45 ~

29 B 49 ~

3 0 V 51 ~

28 V 44 ~

30 G 48 ~

31 B 5 0 ~

This Page Intentionally Left Blank

",
,d

"0

"0

t~

The following table contains note frequencies rounded to the nearest whole number.

Octave C C# D D# E F F# G G# A A# B

1

2

R 3
03

4

5

6
7

8

33

65
131

262

523
1047

2093
41 86

35
69

139

277

554

1109
221 8

443 5

37
73

147

294

587
1175

2349

4699

39
78

156

31 1

622
1245

2489

4978

41

82

165

330

659
1319

2637
5274

44

87

175

349

698
1397

2794

5588

46 49

92 98

185 196

370 392
740 784

1480 1568

2960 3136
5920 6272

52

104
208
41 5

83 1

1661

3322
6645

55

110

220
440

880

1760

3520
7040

58

117

233
466

932

1865
3729

7459

62

123
247

494

988

1976
3951

7902

L,
D

"0

I'D

C
7

430 Appendix D �9 Math Cheat Sheet

Sensors
Raw values to percentage (light sensor):

percentage = 146 - raw value / 7

Raw values to temperatures, in C ~ (temperature sensor):

C ~ = (7 8 5 - raw value) / 8

Conversion of Celsius to Fahrenheit degrees:

F ~ = C ~ x 9 / 5 + 32

Averages
Simple average:

A = (V1 + V2 +... + Vn) / n

Weighted average:

A = (V1 x Wl + V2 x W2 + ... + Vn X Wn) / (W 1 -I" W 2 "1" ,,, "1- Wn)

Exponential smoothing:

A n = (V n X W 1 "1" An_ 1 X W2) / (W 1 + W2)

Interpolation
Linear interpolation: Find the value of the dependent variable Y for a given value
of the independent variable X, knowing that for X equal to Xa,Y is Ya, and for X
equal to Xb,Y is Yb-

(Y - Ya) / (Y b - Ya) = (X - Xa) / (X b - Xa)

Y = (X - Xa) x (Y b - Ya) / (Xb- Xa) -I- Ya

Equation of the straight line which connects the points (Xa,Ya) and (Xb,Yb):

m = (Y b - Ya) / (X b - Xa)

b = Ya - m x Xa

Y = m x X + b

Math Cheat Sheet �9 Appendix D 431

Gears, Wheels, and Navigation
Output angular velocity of the body of a differential gear Oav, given the input
angular velocity of the two axles Iav 1 and Iav2:

Oav = (lav l + lav2) / 2

Distance, Time, Speed:

distance = speed x t ime

speed = distance / t ime

Circumference C of a wheel, given the diameter D:

C = D x � 9

~} = 3 . 1 4 1 5 9 2 6 . . .

Increment in rotation sensor count I that corresponds to a turn of the wheel, given
1~ the resolution of the sensor and G the gear ratio between the wheel and the

sensor:

I = G x R

R = 16 (for Lego ro ta t i on sensors)

Conversion factor F which measures the traveled distance of a wheel for any single
increment in the count of a rotation sensor:

F = C / I = (D x ~) / (G x R)

Actual traveled distance, given F and the count of the sensor:

T = Count x F

Traveled distance T C of a differential drive robot's centerpoint, given the traveled
distances T L and Tp. of its left and right drive wheels:

T c = (T R + T L) / 2

Change of orientation ~]OR, in radians, of a differential drive robot, given the trav-

eled distances T L and T R of its left and right drive wheels, and the distance B
between the wheels:

[~0 R = (T R - T,) I B

4 3 2 A p p e n d i x D �9 M a t h Cheat Sheet

New orientation O i Of" a robot after a change in orientation NO from the

previous orientation Oi_1:

Oi=Oi_l + D O

New position of a robot (Xi, Yi) of a robot after having covered a distance T C in

direction O i from position (xi_l, Yi-1):

X i -- Xi_ 1 -!- T c x cos Oi

Y~ = Y~_~ + Tc x sin Oi

Conversion of radians to degrees:

Degrees = Radians x 180 / D

Required increment in rotation sensor count for a given change of orientation

NO R in radians or ~O D in degrees:

C o u n t = T / F = (DOR x B / 2) / F = ~OR X B / 2F

C o u n t = ~ 0 D x :71; x B / (360 x F)

w w w . s y n g r e s s . c o m

A
Absolute errors, 232
Absolute positioning

description, 250
landmarks, 251-252

AC (alternating current), 42
Acceleration sensors, 92-94,

262-263
Ackerman steering, 184-185
Add-on sensors, 88-89
Agullo, Miguel, 300-302
Air compressors, 203-206
Airflow, controlling, 200-202
Alternating current (AC), 42
Analysis, numerical, 232
Angled liftarms (TECHNIC), 9-10
Angular ratios, 5-6, 9
Angular velocity, 15
Animals, robotic, 324-325

See also Monkey robot; Mouse
robot

Arithmetic. See Mathematics
Arm motors for monkey robot,

311
Armadillo robots, 325
Articulated drive, 191
Astolfo, Dave, 180
Asymmetrical system, 19
Atomic Force Microscopy, 399
Attack strategies for sumo, 388-391
Averages

Index
description, 230
simple, 233-237
weighted, 237-239

Axles, perpendicular, 19, 29

B
Backbracing for monkey robot, 313
Backlash, 25
Balls, plastic, 179
Batteries

changeability, 120
description, 42
sumo rules, 387
voltage, consistent, 400
weak, 136

Battery boxes, external, 51-53,205,
377

Battery packs, rechargeable,
100-101

Battery poles, 42
Beams (beacons), following,

255-259
Beams (structural)

matching, 5-6
parallel, 114-117

Belts, 31-33
Bevel gears, 25-28
Bidirectional communication

adapter (bridge), 95-96
Bipedal (two-legged) robots

433

434 Index

center of gravity (COG), shifting,
300-302

interlacing legs, 297-299
leg design, 284-286
task description, 296-297
turning, 302-303

Bistable mechanisms, 215-217
Bits, addressing singly, 348
Blocks

compare blocks, 313-314
logic, 313
loop, 313
mo tot, 172
motor move, 313
move, 81,172
sensor blocks, NXT-G, 65, 74, 78,

315
ultrasonic programming, 63
worm gear blocks, 19-20

Bluetooth
communication, 106-109
devices, 52
functions in Perl, 109

Bolafios, Jose, 108
Bonahoom, Bryan, 180
Boogaarts, Martyn, 106-107
Bracing

brick backbracing for monkey
robot, 313

diagonal, 6-9
vertical, 4

Braking motors, 56
Brick Sorter robot, 97
Bricks

cleaning, 365

removing, 398-399
See also Programmable bricks

Brickworld, 374
BricxCC development

environment, 142
Bridge, NXT-to-RCX bidirectional

communication, 95-96
Bryan Bonahoom, 180
Bucket robot, 119
Bumpers, 65-67
Bytecodes, 139

C
CanFinder robot, 224
Car-racing contests, 380
Casters, 176-180
Castor bottom for mouse robot,

318
Center of gravity (COG), 280-286,

300-302
Central Illinois Robotic Club

(CIRC), 374
Chain links, 33-34
Chains, 31, 33-35
Challenges. See Contests and

challenges
Chicago Area Robotics (Chibots),

374
CIRC (Central Illinois Robotic

Club), 374
Cleaning bricks, 365
Clicks, counting, 69-71
Climbing walls, 381
Clock example, 145-151
Clutch gear, 20-23

Index 435

Coco5 surveillance robot, 106-107
COG (center of gravity), 280-286
Color sensors, 96-97,252
Communication adapter (bridge),

bidirectional, 95-96
Communication via sound,

160-161
Communications port, high-speed,

64-65
Compare blocks, 313-314
Compass sensors, 94-95,260
Competitions. See Contests and

challenges
Compressed air, 202
Compression and tension, 116-117
Connectors, custom, 62, 100
Containers, 195
Contests and challenges

competitions, 374
fast painting, 380
hosting and entering, 374-376
line, following, 378
wall-climbing, 381
wall-following, 379-380

Control from Web servers, 109
Controllers, spatial motion, 108-109
Converting sound files, 163-167
Copying-system robot, 369-370
Counting clicks, 69-71
Coupling motors, 57-58
Crab robots, 325
Crankshaft, 300-301
Crown gears, 26
Current, electrical, 42-43
Custom connectors, 62, 100

CyberMaster 8482 set, 86
Cybermaster bricks, 136
Cycling valves, 201
Cylinder brackets, 199
Cylinders, 195-200

D
DC (direct current), 42
Dead reckoning (deduced

reckoning), 94, 250
Defense for sumo, 391-392
Degrees of freedom (DOF), 212,

220-222
Detecting

edges, 269-270
obstacles, 270-271
by proximity, 79

Diagonal bracing, 6-9
Differential drive

building, 170-171
description, 174-176
limited-slip, 186-187
line, following, 271-272
lockable, 176

Differential gears, 35-38
Digital interfaces, 105-109
Dinosaur robots, 325
Direct current (DC), 42
D IRPD (Dual Infrared Proximity

Detection) sensors, 79
Distinguishing objects and obstacles,

225-227
DOF (degrees of freedom), 212,

220-222

436 Index

Double-acting compressors,
203-205

Drag racing, 376-377
Drives

articulated, 191
Killough, 192
pivot, 192
skid-steer, 180-183
steering, 183-187
synchro, 187-190
tracked, 34-35, 181-183
Tri-Star wheel, 192
See also Differential drive

Dual Infrared Proximity Detection
(DIRPD) sensors, 79

E
Edge detection, 269-270
Elasticity, 194
Electric brakes, 56
Electric valves, 201-202
Electrical connectors, 62, 100
Electricity, generating, 56-57
Emulating rotation sensors

(encoders), 84-86
Encoders in servo motors. See

Rotation sensors (encoders)
Engines, pneumatic, 206-210
Enhancements

future, 109-110
from RCX, 100-101,136

Envelope, operating, 221,225
Errors, absolute and relative, 232
Examples

clock, 145-151
counting clicks, 69-71
line-following, 151-156
screen-image program, 104
ultrasonic (US) readouts,

displaying, 226-227
ultrasonic (US) test, 77-78

Exploring a room
design, 266-269
edge detection, 269-270

Exponential smoothing, 240
Extensions, file, 101-102
External battery boxes, 51

F
Fast-painting contests, 380
File-handling functions, 102-103
File system in NXT, 101-103
Finding objects, 222-225
Fine motor skills, 398-401
Fingers for monkey robot, 312
Fire-fighting in a maze, 401-402
Firmware, 138-139
First Lego League (FLL), 398
Fitting gears, 23-30
Flash memory, 101
Flexibilitiy, 114
FLL (First Lego League), 398
Following. See Beams (beacons),

following; Lines, following
Four-legged (quadripedal) robots,

283-284, 288-291
Frame and motor assembly for

mouse robot, 316-317

Index 437

Friction, 17, 19, 121
Functions, file-handling, 102-103
Future enhancements, 109-110

G
Games, 104-105
Gases, properties of, 194-195
Gear ratios

angular, 5-6, 9
testing, 18-19

Gearboxes, TECHNIC, 30
Geared motors, 45
Gears

backlash, 25
bevel gears, 25-28
clutch, 20-23
crown gears, 26
different speeds, 15
differential gears, 35-38
fitting, 23-30
knob wheels, 28-29
line, following, 274-275
size range, 17
straight steering, 173-176
teeth, 14-15
torque, 15-16, 17
transferring motion, 15
worm gear blocks, 19-20

Gears, support for, 122-123
Geartrains

clutch gears, 20-23
description, 17-19

Generating electricity, 56-57
GPS and NXT, 110

Grabbers. See Pneumatic hands
Gradient pads, 253-255
Graphical programming software

NXT-G, 137-138
R.OBOLAB, 139, 144

Graphical programming software,
NXT-G, 63-64

Gravity, center of (COG), 280-286

H
Haiku, 369
Hands, pneumatic. See Pneumatic

hands
Handwriting-emulation robot, 370
Hansen, John, 142, 161
Hassenplug, Steve, 192
Head frame and assembly for mouse

robot, 319-322
Hedgehog robots, 325
Height of LEGO parts, 2-3
Hempel, Ralph, 143,203,206
Hervey, Preston, 189-190
Hexapedal (six-legged) robots, 285,

291-296
High-speed communications port,

64-65
Higher math, 245-247
Hips, 301
History of LEGO TECHNIC line,

4
HiTechnic color sensor, 96-97
HiTechnic-sponsored competitions,

374
Hosting and entering contests,

374-376

438 Index

Hurbain, Philippe "Philo," 107
Hybrid studless-studded

construction, 129-131
Hydraulics, 195
Hysteresis, 230, 243-245

I
I2C (Inter-Integrated Circuit)

interface, 63-65,106, 109
Ideal Gas Law, 194
Idler gears, 24
Individual Atom Manipulation

mission, 398
Inertia, 118
Inertial navigation, 262
Infrared sensors

passive infrared (PI1K), 89-90
Techno-Stuff Dual Infrared

Proximity Detection (DI1KPD)
sensor, 79

Insect, pneumatic, 208-209
Integer numbers, 231
Inter-Integrated Circuit (I2C)

interface, 63-65,106, 109
Interface, USB, 105
Interlacing legs, 297-299
Internals of servo motors, 47-48
Interpolation, 230, 240-242
Inverted round tiles, 179

Jammed gears, 18
Jammed micromotors, 46
Java language subset LeJOS NXJ

(Lego Java Operating System
NXJ), 143, 144

K
Kangaroo robots, 324
Killough drive, 192
Killough, Stephen, 192
Knob wheels, 28-29
Koala robots, 325
Kotay, Keith, 192

L
Lafayette LEGO Robotics Club

(LamP.C), 374
Landmarks, 251-252
Large pump, 205
Lasers, 257-258
LCD screen, 103-104
Learning robot, 370
Left side-right side strategy,

330-332
LEGO Users Group Network

(LUGNET), 376
Legs, building, 286-288
Legs, interlacing, 297-299
LeJOS NXJ (Lego Java Operating

System NXJ), 143, 144
Length of LEGO parts, 2-3
Liftarms, angled, 9-10
Light sensors, 71-76,258
Limited memory, 348
Limited-slip differential, 186-187
Lines, drawing. See Turtle robot
Lines, following

contests, 378
course adjustment algorithm, 273
description, 271
differential drive, 271-272

Index 439

example, 151-156
front assembly, 275-276
gearing, 274-275
optimization, 277
reaction time, 278
steering assembly, 276

Links, chain and tread, 33-34
Load considerations, 121-129
Lobster robots, 325
Locating objects, 222-225
Logic blocks, 313
Logo programming language, 350
Long variables, 231-232
Loop blocks, 313
LUGNET (LEGO Users Group

Network), 376

M
Magnetic sensors. See Compass

sensors
Magnets, freeing, 399-400
Map matching, 259
Matching beams, 5-6
Mathematics

absolute errors, 232
averages, 230,233-239
exponential smoothing, 240
higher math, 245-247
hysteresis, 230,243-245
integer numbers, 231
interpolation, 230, 240-242
long variables, 231-232
numerical analysis, 232
overflows, 233
relative errors, 232

short variables, 231-232
underflows, 233
variables, 231

Maze-runner robot
building, 333-335
programming, 336-338

Maze-solver robot
building, 339-341
programming, 341-348

Mazes, solving
left side-right side strategy,

330-332
maze-runner robot, building,

333-335
maze-runner robot, programming,

336-338
maze-solver robot, building,

339-341
maze-solver robot, programming,

341-348
random-turns strategy, 332
relative positioning, 329
route-tracking strategy, 332
task description, 328

MDOF (multi-degree-of-freedom)
vehicles, 191

Memory
flash memory, 101
limited, 348

Micromotors, 45-46
MID I files and MID IBatch,

163-165
MINDSTORMS NXT servo

motors. See Servo motors,
NXT

440 Index

Modularity, maximizing, 118-120,
157

Mole robots, 325
Momentum for sumo, 390
Monkey robot

arm motors, 311
center motor assembly, 307-308
description, 306
fingers, 312
NXT brick backbracing, 313
programming, 314-315
shoulder assembly, 308-309
shoulder/NXT brick bracing,

309-310
shoulder-to-arms support,

310-311
ultrasonic sensor, 313
wiring, 314

Motion controllers, 108-109
Motion-learning robot, 370
Motion, transferring, 15
Motor blocks, 172
Motor move blocks, 313
Motor skills, fine, 398-401
Motorized head assembly for mouse

robot, 320-321
Motors

braking, 56
coupling, 57-58
geared motors, 45
micromotors, 45-46
MINDSTORMS NXT, 16
monkey robot, 307-308
multiplexing, 53
overload, detecting, 55

Power Function system motors,
46, 52-54

RC motors, 46
straight steering, 172-173
sumo robot, 387
TECHNIC, 43-45

Mounting servo motors, 48-51
Mouse robot

castor bottom, 318
description, 316
frame and motor assembly,

316-317
head assembly, motorized,

320-321
head frame, 319-320
head, mounting to body, 321-322
programming, 322-324
tail assembly, 318-319

Move blocks, 81,172
Multi-degree-of-freedom (MDOF)

vehicles, 191
Multiplexing

motors, 53
sensors, 86

Multistage reduction, 17
Multitasking, 157-158
Music. See Sounds

N
Nanotip, fleeing, 399-401
Navigation, inertial, 262
NBC (NXT Byte Codes)

assembler, 142, 143-144
NEIRG (Northeast Indiana Robot

Games), 374

Index 441

Newton-meters (Nm), 16
Nintendo Wii remote controller,

108
Northeast Indiana Robot Games

(NEIRG), 374
Numerical analysis, 232
NXC (Not Exactly C) high-level

text-based language, 142,
143-144

NXT
console, 51
enhancements from RCX,

100-101,136
file system, 101-103
GPS, 110
operating system, 138-139
puppet shows, 110
software development kit (SDK),

142
See also Programmable bricks;

Servo motors, NXT
NXT brick backbracing for

monkey robot, 313
NXT-G (NXT Graphical)

programming environment
description, 64, 137-138
sensor blocks, 65, 74, 78
ultrasonic programming blocks, 63
use of, 139-140

NXT-to-RCX bidirectional
communication adapter
(bridge), 95-96

O
Obstacles

detecting, 270-271

distinguishing, 225-227
Odometry, 260
Operating envelope, 221,225
Operating system, 138-139
Optimizing speed, 376-377
Ostrich robots, 324
Overflows, 233
Overload, detecting, 55
Overmars, Mark, 161
Oyster robots, 325

P
P-NET communications protocol,

64-65
Pads, gradient, 253-255
Pads, writing, 365-366
Parallel beams, 114-117
Passive infrared (PIR) sensors,

89-90
pbLUA (programmable brick LUA)

language, 143, 144
Perpendicular axles, 19, 29
Piano tool, 161-162
Pin, Francois, 192
Pinout of LEGO-PC interface, 63
PIR (passive infrared) sensors, 89-90
Pivot drive, 192
Plastic bails, 179
Playing music, 161-163
Playing soccer, 402
PIwTone command, 161
Pneumatic engines, 206-210
Pneumatic hands

cylinders, 199-200
operating, 212-218

442 Index

versatility, 218
Pneumatic insect, 208-209
Pneumatics

air compressors, 203-206
airflow, controlling, 200-202
compressed air, 202
cylinder brackets, 199
cylinders, 195-200
description, 90, 194-195
pumps, 195-196
solenoids, 200

Polarity, 42
Poles, battery, 42
Porcupine robots, 325
Port, high-speed, 64-65
Positioning. See Absolute

positioning; Beams (beacons),
following; Relative positioning

Positioning, precision, 396-397
Power

controlling, 54-56
description, 42

Power Function system motors, 46,
52-54

Precision
bricks, removing, 398-399
fine motor skills, 398-401
fire-fighting in a maze, 401-402
magnets, freeing, 399-400
playing soccer, 402
positioning, 396-397
shooting, 397-398

Pressure, 194
Pressure sensors, 90-92
Pressure switch, 206

Programmable bricks
description, 134-135
programming environments,

63-64, 137-138
Programming

Logo language, 350
maze-runner robot, 336-338
maze-solver robot, 341-348
monkey robot, 314-315
mouse robot, 322-324
single bits, addressing, 348
tape-writer robot, 366-368
turtle robot, 355-361
See also Blocks

Programming software, NXT-G,
63-64

Proximity detection, 79
Pulleys, 31-33
Pulse width modulation (PWM),

54-55
Pumps, 195-196
Pumps, large, 205
Puppet shows, 110
Pythagorean theorem, 7

Q
Quadripedal (four-legged) robots,

283-284,288-291

R
Races, 31-32
Racing, 376-377
Rack and pinion structure, 183
Ratios, gear. See Gear ratios

Index 443

Ratios, pulley, 33
RC motors, 46
RCX

Cybermaster and Scout bricks, 136
enhancements from, in NXT,

100-101,136
See also Rotation sensors

(encoders)
Reaction time, 278
Readability, 157
Rechargeable battery packs, 100
Reduction, multistage, 17
Reinforcement for sumo robot, 388
Relative errors, 232
Relative positioning, 250-251,

260-262
Resultant force, 280
Reusability, 157
RoboCup Junior, 253,402
ROBOLAB programming

environment, 139, 144
RobotArm-56, 109
RobotC

memory, limited, 348
programming environment, 51,

139
ultrasonic test, 77-78
use of, 141-142

Robots, specific
animals, miscellaneous, 324-325
bipedal (two-legged), 284-286,

296-303
Brick Sorter, 97
bucket, 119
CanFinder, 224

copying system, 369-370
handwriting emulation, 370
hexapedal (six-legged) robots, 285,

291-296
maze-runner, building, 333-335
maze-runner, programming,

336-338
maze-solver, building, 339-341
maze-solver, programming,

341-348
motion-learning, 370
quadripedal (four-legged),

283-284, 288-291
RoboCup Junior, 253
surveillance, 106-107
WallFollower, 79
See also Monkey robot; Mouse

robot; Sumo robot; Tape-writer
robot; Turtle robot

Room, exploring. See Exploring a
room

Rotation sensors (encoders)
description, 79-83
emulating, 84-86
moved to servo motors, 101
straight steering, 172

Round tiles, inverted, 179
Route-tracking strategy for mazes,

332
RTL Toronto, 374
Rules for sumo robot, 385-386

S
Scout bricks, 136
Screen-image program, 104

444 Index

Screen, LCD, 103-104
SDK (software development kit),

142
Sensor blocks, NXT-G, 65, 74, 78,

315
Sensor interface

custom connectors, 62, 100
I2C (Inter-Integrated Circuit)

interface, 63-65,106, 109
wiring pinout, 63

Sensors
acceleration, 92-94, 262-263
add-on, 88-89
color, 96-97,252
compass, 94-95,260
light, 71-76,258
multiple types of, 101
multiplexing, 86
passive infrared (PIR), 89-90
pressure, 90-92
sound, 166
Techno-Stuff Dual Infrared

Proximity Detection (DIRPD)
sensors, 79

touch, 65-69
ultrasonic, 313
ultrasonic (US) or sonar, 77-78,

223-227,259
See also Rotation sensors

(encoders)
Servo motor encoders (rotation

sensors). See Rotation sensors
(encoders)

Servo motors, NXT
electronics, 46
geared down, 16

internals, 47-48
mounting, 48-51
wiring, 51-54

SHARP sensor technology, 78
Shooting, 397-398
Short variables, 231-232
Shoulder of monkey robot,

308-311
Simple averages, 233-237
Single bits, addressing, 348
Six-legged (hexapedal) robots, 285,

291-296
Size

bricks, 2-3
gears, 17

Skid-steer drive, 180-183
Smoothing, exponential, 240
Soccer, playing, 402
Software development kit (SDK),

142
Solenoids, 200
Sonar (ultrasonic or US) sensors,

77-78,223-227,259
Sound sensors, 166
Sounds

communication, 160
converting files, 163-167
MIDI files and MIDIBatch,

163-165
playing music, 161-163
WAV2RSO program, 165-166

Spatial motion controllers, 108-109
Speaker volume, 160
Speed

Index 445

combining with precision,
377-378

optimizing, 376-377
sumo robot, 389

Speed, gearing for, 15-16
Sprockets, 35
Squirrel robots, 324
Steering drives, 183-187
Straight steering

casters, 176-180
gears, 173-176
motors, 172-173

Strategies for mazes
left side-right side, 330-332
random turns, 332
route-tracking, 332

Strategies for sumo, 388-391
Strength for sumo, 386-387
Studless construction, 100, 114-118
Studless-studded hybrid

construction, 129-131
"Studs up," 2
Sumo robot

attack strategies, 388-391
batteries, 387
defense, 391-392
maximizing strength and traction,

386-387
momentum, 390
motors, 387
reinforcement, 388
rules, 385-386
speed, 389
task description, 384
testing, 392-393

transmission, 390
tricks, 391

Supporting beams
gears, 122-123
wheels, 121-122

Surveillance robot, 106-107
Switch, pressure, 206
Synchro drive, 187-190

T
Tail assembly for mouse robot,

318-319
Tape-writer robot

building, 362-366
haiku, 369
programming, 366-368
task description, 361-362

TECHNIC line
gearboxes, 30
history, 4
liftarms, 9-10
motors, 43-45

Techno-Stuff Dual Infrared
Proximity Detection (DIRPD)
sensors, 79

Teeth in gears, 14-15
Tension and compression, 116-117
Testability, 157
Testing

gear ratios, 18-19
ultrasonic (US) or sonar sensors,

77-78
Thermal energy, 43
Thermodynamics, 194
Tic-Tac-Toe game, 105

446 Index

Tiles, inverted round, 179
Torque, 15-16, 17, 32
Touch sensors, 65-69
Tracked drives, 34-35,181-183
Traction for sumo, 386-387
Transferring motion, 15
Transmission for sumo robot, 390
Tread links, 33-35
Tri-Star wheel drive, 192
Tricks for sumo robot, 391
Trigonometry, 258,262
Tubing, 218
Turntables, 187-188
Turtle robot

building, 350-355
programming, 355-361
task description, 350

Two-legged robots. See Bipedal
(two-legged) robots

U
Ultrasonic sensors, 313
Ultrasonic (US) or sonar sensors,

77-78,223-227,259
Underflows, 233
USB interface, 105

V
Valves, electric and cycling,

201-202
Van Dam, Bert, 208-209
Variables, 231-232
Velocity, angular, 15
Vertical bracing, 4

VHF Omnidirectional Range
system (VOR), 256

Voltage, 42-43
Voltage, consistent, 400
Volume of speaker, 160
VOR (VHF Omnidirectional

Range system), 256

W
Walking

bipedal (two-legged) robots,
284-286,296-303

center of gravity (COG), 280-286
defining, 280
hexapedal (six-legged) robots, 285,

291-296
legs, building, 286-288
quadripedal (four-legged) robots,

283-284, 288-291
Wall-climbing contests, 381
Wall-following contests, 379-380
WallFollower robot, 79
WAV2RSO program, 165-166
Web servers, control from, 109
Web sites

Brick Sorter robot, 97
fan-related blogs, 63
Guy Ziv, 55, 79
P-NET communications protocol,

64
WallFollower robot, 79

Weighted averages, 237-239
Wheels, support for, 121-122
Width of LEGO parts, 2-3

Index 447

Wii remote controller (Nintendo),
108

Wiring
monkey robot, 314
pinout of LEGO-PC interface, 63
servo motors, 51-54

Worm gear blocks, 19-20
Writing pads, 365-366

Z
Ziv, Guy, 55, 79

This Page Intentionally Left Blank

Syngress'. The Definition of a Serious Security Library

Syn.gress (sin-gres)" noun, sin 2. Freedom from risk or danger; safety. See security.

Cyber Spying: Tracking Your Family's
(Sometimes) Secret Online Lives
Dr. Eric Cole, Michael Nordfeh,
Sandra Ring, and Ted Fair

Have you ever wondered about that friend your spouse e-mails, or who they
spend hours chatting online with? Are you curious about what your children are
doing online, whom they meet, and what they talk about? Do you worry about
them finding drugs and other illegal items online, and wonder what they look at?
This book shows you how to monitor and analyze your family's online behavior.

!::~ i !!i'i!i' �84184184184 q i / :f :!!IY q~ ii: :ill /:di '�84

Stealing the Network:
How to Own an Identity
Timothy Mullen, Ryan Russell, Riley (Caezar) Eller,
Jeff Moss, Jay Beale, Johnny Long, Chris Hurley, Tom Parker, Brian Hatch
The first two books in this series "Stealing the Network: How to Own the Box"
and "Stealing the Network: How to Own a Continent" have become classics
in the Hacker and Infosec communities because of their chillingly realistic
depictions of criminal hacking techniques. In this third installment, the all-star
cast of authors tackle one of the fastest-growing crimes in the world" Identity
Theft. Now, the criminal hackers readers have grown to both love and hate
try to cover their tracks and vanish into thin air...

Software Piracy Exposed
Paul Craig, Ron Honick

For every $2 worth of software purchased legally, $1 worth of software is
pirated illegally. For the first time ever, the dark underground of how software is
stolen and traded over the Internet is revealed. The technical detail provided will
open the eyes of software users and manufacturers worldwide! This book is a
tell-it-like-it-is expos~ of how tens of billions of dollars worth of software is stolen
every year.

i �84 ~ }i i : / ; ' :i

.... ;ili

S Y N ~ R E S S |

Syngress" The Definition of a Serious Security Library

Syn.gress (sin-gres)" noun, sing. Freedom from risk or danger; safety. See security.

Phishing Exposed
Lance James, Secure Science Corporation,
Joe Stewart (Foreword)

If you have ever received a phish, become a victim of a phish, or manage the secu-
rity of a major e-commerce or financial site, then you need to read this book. The
author of this book delivers the unconcealed techniques of phishers including their
evolving patterns, and how to gain the upper hand against the ever-accelerating
attacks they deploy. Filled with elaborate and unprecedented forensics, Phishing
Exposed details techniques that system administrators, law enforcement, and fraud
investigators can exercise and learn more about their attacker and their specific
attack methods, enabling risk mitigation in many cases before the attack occurs.

�9 :i:: ii

!:~ i, ~ i i! i i :i i ' !!:: ~ i ! iii,:ii:'~ii? 'i:iii~!!i ~@,:ii~i �84184184

Penetration Tester's Open Source Toolkit
Johnny Long, Chris Hurley, SensePost,
Mark Wolfgang, Mike Petruzzi
This is the first fully integrated Penetration Testing book and bootable Linux
CD containing the "Auditor Security Collection," which includes over 300 of
the most effective and commonly used open source attack and penetration
testing tools. This powerful tool kit and authoritative reference is written by the
security industry's foremost penetration testers including HD Moore, Jay Beale,
and SensePost. This unique package provides you with a completely portable
and bootable Linux attack distribution and authoritative reference to the
toolset included and the required methodology.

i!:~:~::::, iii ii! ~:: �84184184 ii i i : i ,!i / !~ i

Google Hacking for Penetration Testers
Johnny Long, Foreword by Ed Skoudis

Google has been a strong force in Internet culture since its 1998 upstart. Since
then, the engine has evolved from a simple search instrument to an innovative
authority of information. As the sophistication of Google grows, so do the
hacking hazards that the engine entertains. Approaches to hacking are forever
changing, and this book covers the risks and precautions that administrators
need to be aware of during this explosive phase of Google Hacking.

::~:: : : :i �84 !! 'i i ,!i ~ , ~i: i!ii:~iiii~ !! i 5 '�84 i!!!~i '~i :,:: ii �84 i!

S Y N ~ R E S S |

Syngress'. The Definition of a Serious Security Library

Syn.gress (sin-gres)" noun, sing. Freedom from risk or danger; safety. See security.

Cisco PIX Firewalls:
Configure, Manage, & Troubleshoot

Charles Riley, Umer Khan, Michael Sweeney
Cisco PIX Firewall is the world's most used network firewall, protecting internal
networks from unwanted intrusions and attacks. Virtual Private Networks (VPNs)
are the means by which authorized users are allowed through PIX Firewalls.
Network engineers and security specialists must constantly balance the need for
air-tight security (Firewalls)with the need for on-demand access (VPNs). In this
book, Umer Khan, author of the #1 best selling PIX Firewall book, provides a con-
cise, to-the-point blueprint for fully integrating these two essential pieces of any
enterprise network.

Configuring Netscreen Firewalls
Rob Cameron
Configuring NetScreen Firewalls is the first book to deliver an in-depth look at
the NetScreen firewall product line. It covers all of the aspects of the
NetScreen product line from the SOHO devices to the Enterprise NetScreen
firewalls. Advanced troubleshooting techniques and the NetScreen Security
Manager are also covered..

Configuring Check Point
NGX VPN- I/FireWall- I
Barry J. Stiefel, Simon Desmeules

Configuring Check Point NGX VPN-1/Firewall-1 is the perfect reference for
anyone migrating from earlier versions of Check Point's flagship firewall/VPN
product as well as those deploying VPN-1/Firewall-1 for the first time. NGX
includes dramatic changes and new, enhanced features to secure the integrity of
your network's data, communications, and applications from the plethora of
blended threats that can breach your security through your network perimeter,
Web access, and increasingly common internal threats.

S Y N ~ R E S S |

Syngres s." The Definition of a Serious Security Library

Syn.gress (sin-gres)" noun, sing. Freedom from risk or danger; safety. See security.

Syngress IT Security
Project Management Handbook
Susan Snedaker

The definitive work for IT professionals responsible for the management of the
design, configuration, deployment and maintenance of enterprise-wide security
projects. Provides specialized coverage of key project areas including
Penetration Testing, Intrusion Detection and Prevention Systems, and Access
Control Systems.

�9 ~:: : i ~

ii:: ~i: :,:!: ii i!iil i �84184184 '5:!!!ii ~ ~ !i i'i: 1 7 7 'i:ii~' i!il �84 ~ i i / , i �84184 !

Combating Spyware in the Enterprise
Paul Piccard

Combating Spyware in the Enterprise is the first book published on defending
enterprise networks from increasingly sophisticated and malicious spyware.
System administrators and security professionals responsible for administering
and securing networks ranging in size from SOHO networks up to the largest
enterprise networks will learn to use a combination of free and commercial
anti-spyware software, firewalls, intrusion detection systems, intrusion preven-
tion systems, and host integrity monitoring applications to prevent the installa-
tion of spyware, and to limit the damage caused by spyware that does in fact
infiltrate their networks.
i iii:ii!i!i:~ill �84 !i ii i'i �84 I:�84 i i �84184)~i~ :i : i

i:::i !~ :~i i!!i : i : i ;�84184 :i~: ~ i li �84 i i , : ~ i �84184 iii ~ ! i

Practical VolP Security
Thomas Porter

After struggling for years, you finally think you've got your network secured
from malicious hackers and obnoxious spammers. Just when you think it's safe
to go back into the water, VolP finally catches on. Now your newly converged
network is vulnerable to DoS attacks, hacked gateways leading to unauthorized
free calls, call eavesdropping, malicious call redirection, and spam over
Internet Telephony (SPIT). This book details both VolP attacks and defense tech-
niques and tools.

: ? i i : : : i i i

i:::: : ~ . : ~ i::i I �9 ii '::: :i:~ :~i: ~ ~ ::: ::!i: :!: ~;~i ::i: :!:!:i: ~i iii :::i~:: i! �84184184 ii

.:~!iiil

S Y N ~ R E S S |

Syngres s." The Definition of a Serious Security Library

Syn.gress (sin-gres)" noun, sing,. Freedom from risk or danger; safety. See security.

Snort 2.1 Intrusion Detection,
Second Edition
Jay Beale, Brian Caswell, et. al.

"The authors of this Snort 2.1 Intrusion Detection, Second Edition have produced a
book with a simple focus, to teach you how to use Snort, from the basics of get-
ting started to advanced rule configuration, they cover all aspects of using Snort,
including basic installation, preprocessor configuration, and optimization of your
Snort system."
-Stephen Northcutt
Director of Training & Certification, The SANS Institute

Ethereal Packet Sniffing
Ethereal offers more protocol decoding and
reassembly than any free sniffer out there and ranks
well among the commercial tools. You've all used tools like tcpdump or win-
dump to examine individual packets, but Ethereal makes it easier to make
sense of a stream of ongoing network communications. Ethereal not only
makes network troubleshooting work far easier, but also aids greatly in net-
work forensics, the art of finding and examining an attack, by giving a
better "big picture" view. Ethereal Packet Sniffing will show you how to
make the most out of your use of Ethereal.

!!::~: i~ i i i i : i i ; '~ i i i i~ii i i l : ; i l i : i / ! ! i i �84

Nessus Network Auditing
Jay Beale, Haroon Meer, Roelof Temmingh,
Charl Van Der Walt, Renaud Deraison

Crackers constantly probe machines looking for both old and new vulnerabilities,
In order to avoid becoming a casualty of a casual cracker, savvy sys admins
audit their own machines before they' re probed by hostile outsiders (or even
hostile insiders). Nessus is the premier Open Source vulnerability assessment tool,
and was recently voted the "most popular" open source security tool of any kind.
Nessus Network Auditing is the first book available on Nessus and it is written by
the world's premier Nessus developers led by the creator of Nessus, Renaud
Deraison.
i iiiiiiii!!:ii i ! i ~;: !!iii!!i : i l l ; i ~ii!:i!i ~i::

i :~i i i iili: i l i ; ~ i !!i �84 i i �84 !i:, !iilil :!, i; :~ ;~ !:!ill ~i : i: il �84184 il

Syngress'. The Definition of a Serious Security Library
Syn.gress (sin-gres)" noun, sing. Freedom from risk or danger; safety. See security.

Buffer OverFlow Attacks:
Detect, Exploit, Prevent
James C. Foster, Foreword by Dave Aitel

The SANS Institute maintains a list of the "Top 10 Software Vulnerabilities." At the
current time, over half of these vulnerabilities are exploitable by Buffer Overflow
attacks, making this class of attack one of the most common and most dangerous
weapons used by malicious attackers. This is the first book specifically aimed at
detecting, exploiting, and preventing the most common and dangerous attacks.

i Z

Programmer's
Ultimate Security DeskRef
James C. Foster
The Programmer's Ultimate Security DeskRef is the only complete desk reference
covering multiple languages and their inherent security issues. It will serve as the
programming encyclopedia for almost every major language in use.

While there are many books starting to address the broad subject of security
best practices within the software development lifecycle, none has yet to address
the overarching technical problems of incorrect function usage. Most books fail
to draw the line from covering best practices security principles to actual code
implementation. This book bridges that gap and covers the most popular pro-
gramming languages such as Java, Perl, C++, C#, and Visual Basic.

!

Hacking the Code:
ASP.HET Web Application Security
Mark Burnett

This unique book walks you through the many threats to your Web application
code, from managing and authorizing users and encrypting private data to
filtering user input and securing XML. For every defined threat, it provides a
menu of solutions and coding considerations. And, it offers coding examples and
a set of security policies for each of the corresponding threats.

S Y N ~ R E S S ~

	LEGO MINDSTORMS NXT
	Copyright Page
	Contents
	Foreword
	Preface
	Chapter 1. Understanding LEGO Geometry
	Introduction
	Expressing Sizes and Units
	Squaring the LEGO World: Vertical Bracing
	Tilting the LEGO World: Diagonal Bracing
	TECHNIC Liftarms: Angles Built In
	Summary

	Chapter 2. Playing with Gears
	Introduction
	Counting Teeth
	Gearing Up and Down
	Riding That Train: The Geartrain
	Worming Your Way: The Worm Gear
	Limiting Strength with the Clutch Gear
	Placing and Fitting Gears
	Using Pulleys, Belts, and Chains
	Making a Difference: The Differential
	Summary

	Chapter 3. Controlling Motors
	Introduction
	Pacing, Trotting, and Galloping
	Mounting Motors
	Wiring Motors
	Controlling Power
	Coupling Motors
	Summary

	Chapter 4. Reading Sensors
	Introduction
	Digital Sensor Ports with the I2C (Inter-Integrated Circuit) Interface
	The Touch Sensor
	The Light Sensor
	The Ultrasonic Sensor
	The Servo Motor Encoder (Rotation Sensor)
	Sensor Tips and Tricks
	Other Sensors
	Summary

	Chapter 5. What's New with the NXT?
	Introduction
	Notable Enhancements
	The NXT File System
	The LCD Screen
	Digital Interfaces and Bluetooth
	Future Possibilities
	Summary

	Chapter 6. Building Strategies
	Introduction
	Studless Building Techniques
	Maximizing Modularity
	Loading the Structure
	Putting It All Together: Chassis, Modularity, and Load
	Hybrid Robots: Using Studless and Studded LEGO Pieces
	Summary

	Chapter 7. Programming the NXT
	Introduction
	What Is the NXT Programmable Brick?
	Introduction to Programming the NXT Brick
	Using RobotC
	Using Other Programming Languages
	Code Samples
	Running Independent Tasks
	Summary

	Chapter 8. Playing Sounds and Music
	Introduction
	Communicating through Tones
	Playing Music
	Converting Sound and Music Files
	Summary

	Chapter 9. Becoming Mobile
	Introduction
	Building the Simple Differential Drive
	Building a Skid-Steer Drive
	Building a Steering Drive
	Building a Synchro Drive
	Other Configurations
	Summary

	Chapter 10. Getting Pumped: Pneumatics
	Introduction
	Recalling Some Basic Science
	Pumps and Cylinders
	Controlling the Airflow
	Building Air Compressors
	Building a Pneumatic Engine
	Summary

	Chapter 11. Finding and Grabbing Objects
	Introduction
	Operating Hands and Grabbers
	Finding Objects
	Distinguishing Objects and Obstacles
	Summary

	Chapter 12. Doing the Math
	Introduction
	Multiplying and Dividing
	Averaging Data
	Using Interpolation
	Understanding Hysteresis
	Higher Math
	Summary

	Chapter 13. Knowing Where You Are
	Introduction
	Choosing Internal or External Guidance
	Looking for Landmarks: Absolute Positioning
	Map Matching Using Ultrasonic Sensor
	Combining Compass Sensor to Increase Precision
	Measuring Movement: Relative Positioning
	Measuring Movement: Acceleration Sensor
	Summary

	Chapter 14. Classic Projects
	Introduction
	Exploring Your Room
	Following a Line
	Summary

	Chapter 15. Building Robots That Walk
	Introduction
	The Theory behind Walking
	Building Legs
	Building a Four-Legged Robot
	Building a Six-Legged Steering Robot
	Designing Bipeds
	Summary

	Chapter 16. Robotic Animals
	Introduction
	Creating a Monkey
	Programming Your Monkey
	Creating a Mouse
	Creating Other Animals
	Summary

	Chapter 17. Solving a Maze
	Introduction
	Finding the Way Out
	Building a Maze Runner
	Building a Maze Solver
	Summary

	Chapter 18. Drawing and Writing
	Introduction
	Creating a Logo Turtle
	Tape Writer
	Further Suggestions
	Summary

	Chapter 19. Racing Against Time
	Introduction
	Hosting and Participating in Contests
	Optimizing Speed
	Combining Speed with Precision
	Summary

	Chapter 20. Hand-to-Hand Combat
	Introduction
	Building a Robotic Sumo
	Attack Strategies
	Getting Defensive
	Testing Your Sumo
	Summary

	Chapter 21. Searching for Precision
	Introduction
	Precise Positioning
	Shooting with Precision
	Fine Motor Skills of Your Robot
	Fire Fighting in a Maze
	Playing Soccer
	Summary

	Appendix A. Resources
	Introduction
	Bibliography
	General Interest Sites
	Chapter 1 Understanding LEGO Geometry
	Chapter 2 Playing with Gears
	Chapter 3 Controlling Motors
	Chapter 4 Reading Sensors
	Chapter 5 What's New with the NXT
	Chapter 6 Building Strategies
	Chapter 7 Programming the NXT
	Chapter 8 Playing Sounds and Music
	Chapter 9 Becoming Mobile
	Chapter 10 Getting Pumped: Pneumatics
	Chapter 11 Finding and Grabbing Objects
	Chapter 12 Doing the Math
	Chapter 13 Knowing Where You Are
	Chapter 14 Classic Projects
	Chapter 15 Building Robots that Walk
	Chapter 16 Robotic Animals
	Chapter 17 Solving a Maze
	Chapter 18 Drawing and Writing
	Chapter 19 Racing Against Time
	Chapter 20 Hand-to-Hand Combat
	Chapter 21 Searching for Precision

	Appendix B. Matching Distances
	Appendix C. Note Frequencies
	Appendix D. Math Cheat Sheet
	Index

